Genetic Resistance to Newcastle Disease in Poultry: A Narrative Review
Abstract
1. Introduction
2. Review Methodology
3. Newcastle Disease Overview
4. Genetic Research on Resistance to NDV
5. Advances in Molecular Genetics Research on Resistance to ND
5.1. Genomic and Transcriptomic Approaches in Studying Resistance to NDV
5.1.1. Candidate Genes Associated with Resistance to NDV
5.1.2. Major Histocompatibility Complex (MHC) and Resistance to NDV
5.1.3. Quantitative Trait Loci (QTL) Linked to NDV in Chickens
6. Breeding Strategy for Disease Resistance to NDV
Selective Breeding
7. Challenges and Opportunities for Disease Resistance Against NDV
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, D.J.; Aldous, E.W.; Fuller, C.M. The Long View: A Selective Review of 40 Years of Newcastle Disease Research. Avian Pathol. 2012, 41, 329–335. [Google Scholar] [CrossRef]
- Alexander, D.J. Newcastle Disease and Other Avian Paramyxoviruses. Rev. Sci. Tech. Int. Off. Epizoot. 2000, 19, 443–455. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., de Wit, S., Grimes, T., Johnson, D., Kromm, M., et al., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; ISBN 9781119371168. [Google Scholar] [CrossRef]
- Dimitrov, K. Newcastle Disease in Poultry. In MSD Veterinary Manual; Texas A&M Veterinary Medical Diagnostic Laboratory: College Station, TX, USA, 2024. [Google Scholar]
- Rajkhowa, T.K.; Zodinpuii, D.; Bhutia, L.D.; Islam, S.J.; Gogoi, A.; Hauhnar, L.; Kiran, J.; Choudhary, O.P. Emergence of a Novel Genotype of Class II New Castle Disease Virus in North Eastern States of India. Gene 2023, 864, 147315. [Google Scholar] [CrossRef]
- Bwala, D.G.; Clift, S.; Duncan, N.M.; Bisschop, S.P.R.; Oludayo, F.F. Determination of the Distribution of Lentogenic Vaccine and Virulent Newcastle Disease Virus Antigen in the Oviduct of SPF and Commercial Hen Using Immunohistochemistry. Res. Vet. Sci. 2012, 93, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Ezema, W.S.; Eze, D.C.; Shoyinka, S.V.O.; Okoye, J.O.A. Atrophy of the Lymphoid Organs and Suppression of Antibody Response Caused by Velogenic Newcastle Disease Virus Infection in Chickens. Trop. Anim. Health Prod. 2016, 48, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
- Okwor, E.; Eze, D.; Echeonwu, G.O.; Ibu, J.; Eze, C.; Okoye, J. Comparative Studies on the Effects of La Sota and Komarov Vaccine Antibodies on Organ Distribution, Persistence and Shedding of Kudu 113 Virus in Chickens. J. Anim. Plant Sci. 2016, 26, 1226–1235. [Google Scholar]
- Sá E Silva, M.; Susta, L.; Moresco, K.; Swayne, D.E. Vaccination of Chickens Decreased Newcastle Disease Virus Contamination in Eggs. Avian Pathol. 2018, 45, 38–45. [Google Scholar] [CrossRef]
- Cattoli, G.; Susta, L.; Terregino, C.; Brown, C. Newcastle Disease: A Review of Field Recognition and Current Methods of Laboratory Detection. J. Vet. Diagn. Investig. 2011, 23, 637–656. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 89–138. [Google Scholar]
- Igwe, A.O.; Afonso, C.L.; Ezema, W.S.; Brown, C.C.; Okoye, J.O.A. Pathology and Distribution of Velogenic Viscerotropic Newcastle Disease Virus in the Reproductive System of Vaccinated and Unvaccinated Laying Hens (Gallus gallus domesticus) by Immunohistochemical Labelling. J. Comp. Pathol. 2018, 159, 36–48. [Google Scholar] [CrossRef]
- Igwe, A.O.; Ihedioha, J.I.; Okoye, J.O.A. Changes in Serum Calcium and Phosphorus Levels and Their Relationship to Egg Production in Laying Hens Infected with Velogenic Newcastle Disease Virus. J. Appl. Anim. Res. 2018, 46, 523–528. [Google Scholar] [CrossRef]
- Gavora, J.S.; Spencer, J.L. Breeding for Genetic Resistance to Disease: Specific or General? Worlds Poult. Sci. J. 1978, 34, 137–148. [Google Scholar] [CrossRef]
- Gavora, J.S. Genetic Control of Disease and Disease Resistance in Poultry. In Manipulation of the Avian Genome; CRC Press: Boca Raton, FL, USA, 1992; ISBN 978-0-203-74828-2. [Google Scholar]
- Oliver, C.P. Genetic Resistance to Disease in Domestic Animals. BioScience 1958, 8, 42–43. [Google Scholar] [CrossRef]
- Bishop, S.C. Disease Genetics: Successes, Challenges and Lessons Learnt. In Proceedings of the 10th World Congress of Genetics Applied to Livestock Production, Vancouver, BC, Canada, 17 August 2014. [Google Scholar]
- Aggrey, S.E.; Lessard, M.; Hutchings, D.; Joseph, S.; Feng, X.P.; Zadworny, D.; Kuhnlein, U. Association of Genetic Markers with Immune Traits. In Proceedings of the 5th International Symposium on Marek’s Disease, Kellogg Center, Michigan State University, East Lansing, MI, USA, 7–11 September 1996; pp. 80–85. [Google Scholar]
- Zekarias, B.; Ter Huurne, A.A.H.M.; Landman, W.J.M.; Rebel, J.M.J.; Pol, J.M.A.; Gruys, E. Immunological Basis of Differences in Disease Resistance in the Chicken. Vet. Res. 2002, 33, 109–125. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Resistant and Susceptible Chicken Lines Show Distinctive Responses to Newcastle Disease Virus Infection in the Lung Transcriptome. BMC Genom. 2017, 18, 989. [Google Scholar] [CrossRef]
- Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Novel Mechanisms Revealed in the Trachea Transcriptome of Resistant and Susceptible Chicken Lines Following Infection with Newcastle Disease Virus. Clin. Vaccine Immunol. CVI 2017, 24, e00027-17. [Google Scholar] [CrossRef]
- Lamont, S.J. Impact of Genetics on Disease Resistance. Poult. Sci. 1998, 77, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Jie, H.; Liu, Y.P. Breeding for Disease Resistance in Poultry: Opportunities with Challenges. Worlds Poult. Sci. J. 2011, 67, 687–696. [Google Scholar] [CrossRef]
- Dar, M.A.; Mumtaz, P.T.; Ahmad Bhat, S.; Nabi, M.; Taban, Q.; Shah, R.A.; Khan, H.M.; Ahmad, S.M. Genetics of Disease Resistance in Chicken. In Application of Genetics and Genomics in Poultry Science; IntechOpen: London, UK, 2018; ISBN 978-1-78923-631-6. [Google Scholar]
- Del Vesco, A.P.; Kaiser, M.G.; Monson, M.S.; Zhou, H.; Lamont, S.J. Genetic Responses of Inbred Chicken Lines Illustrate Importance of eIF2 Family and Immune-Related Genes in Resistance to Newcastle Disease Virus. Sci. Rep. 2020, 10, 6155. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, F.; Yin, H.; He, Q.; Lu, Y.; Zhu, Q.; Lan, X.; Zhao, X.; Li, D.; Liu, Y.; et al. Chicken Interferon Regulatory Factor 7 (IRF7) Can Control ALV-J Virus Infection by Triggering Type I Interferon Production through Affecting Genes Related with Innate Immune Signaling Pathway. Dev. Comp. Immunol. 2021, 119, 104026. [Google Scholar] [CrossRef]
- Gul, H.; Habib, G.; Khan, I.M.; Rahman, S.U.; Khan, N.M.; Wang, H.; Khan, N.U.; Liu, Y. Genetic Resilience in Chickens against Bacterial, Viral and Protozoal Pathogens. Front. Vet. Sci. 2022, 9, 1032983. [Google Scholar] [CrossRef]
- Iyer, S.G.; Dobson, N. An Attempt to Breed Fowls Resistant to Newcastle Disease from Immune Hens. Vet. Rec. 1941, 53, 86–188. [Google Scholar]
- Teklinski, A. Recherches Sur l’heredite de l’immunite Contra La Pseudopeste Aviare En Pologne. In Proceedings of the 8th World’s Poultry Congress, Copenhagen, Denmark, 20–27 August 1948; Volume 1, pp. 658–663. [Google Scholar]
- Godfrey, G.F. Evidence for Genetic Variation in Resistance to Newcastle Disease: In the Domestic Fowl. J. Hered. 1952, 43, 22–24. [Google Scholar] [CrossRef]
- Francis, D.W.; Kish, A.F. Familial Resistance to Newcastle Disease in a Strain of New Hampshires. Poult. Sci. 1955, 34, 331–336. [Google Scholar] [CrossRef]
- Gordon, C.D.; Beard, C.W.; Hopkins, S.R.; Siegel, H.S. Chick Mortality as a Criterion for Selection toward Resistance or Susceptibility to Newcastle Disease. Poult. Sci. 1971, 50, 783–789. [Google Scholar] [CrossRef]
- Peleg, B.A.; Soller, M.; Ron, N.; Hornstein, K.; Brody, T.; Kalmar, E. Familial Differences in Antibody Response of Broiler Chickens to Vaccination with Attenuated and Inactivated Newcastle Disease Virus Vaccine. Avian Dis. 1976, 20, 661–668. [Google Scholar] [CrossRef]
- Sharaf, M.M.; Nestor, K.E.; Saif, Y.M.; Sacco, R.E.; Havenstein, G.B. Antibody Response to Newcastle Disease Virus and Pasteurella Multocida of Two Strains of Turkeys. Poult. Sci. 1988, 67, 1372–1377. [Google Scholar] [CrossRef] [PubMed]
- Sacco, R.E.; Nestor, K.E.; Saif, Y.M.; Tsai, H.J.; Patterson, R.A. Effect of Genetic Selection for Increased Body Weight and Sex of Poult on Antibody Response of Turkeys to Newcastle Disease Virus and Pasteurella Multocida Vaccines. Avian Dis. 1994, 38, 33–36. [Google Scholar] [CrossRef]
- Sacco, R.E.; Nestor, K.E.; Saif, Y.M.; Tsai, H.J.; Anthony, N.B.; Patterson, R.A. Genetic Analysis of Antibody Responses of Turkeys to Newcastle Disease Virus and Pasteurella Multocida Vaccines. Poult. Sci. 1994, 73, 1169–1174. [Google Scholar] [CrossRef]
- Heller, E.D.; Leitner, G.; Friedman, A.; Uni, Z.; Gutman, M.; Cahaner, A. Immunological Parameters in Meat-Type Chicken Lines Divergently Selected by Antibody Response to Escherichia coli Vaccination. Vet. Immunol. Immunopathol. 1992, 34, 159–172. [Google Scholar] [CrossRef]
- Cole, R.K.; Hutt, F.B. Genetic Differences in Resistance to Newcastle Disease. Avian Dis. 1961, 5, 205–214. [Google Scholar] [CrossRef]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle Disease Virus: Current Status and Our Understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef]
- Smith, J.; Speed, D.; Law, A.S.; Glass, E.J.; Burt, D.W. In-Silico Identification of Chicken Immune-Related Genes. Immunogenetics 2004, 56, 122–133. [Google Scholar] [CrossRef]
- Hillier, L.W.; Miller, W.; Birney, E.; Warren, W.; Hardison, R.C.; Ponting, C.P.; Bork, P.; Burt, D.W.; Groenen, M.A.M.; Delany, M.E.; et al. Sequence and Comparative Analysis of the Chicken Genome Provide Unique Perspectives on Vertebrate Evolution. Nature 2004, 432, 695–716. [Google Scholar] [CrossRef]
- Rauw, W.M. Immune Response from a Resource Allocation Perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef]
- Luo, C.; Qu, H.; Ma, J.; Wang, J.; Li, C.; Yang, C.; Hu, X.; Li, N.; Shu, D. Genome-Wide Association Study of Antibody Response to Newcastle Disease Virus in Chicken. BMC Genet. 2013, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.D.; Gallardo, R.A. The Chicken MHC: Insights into Genetic Resistance, Immunity, and Inflammation Following Infectious Bronchitis Virus Infections. Vaccines 2020, 8, 637. [Google Scholar] [CrossRef]
- Lee, J.; Kim, D.-H.; Lee, K. Current Approaches and Applications in Avian Genome Editing. Int. J. Mol. Sci. 2020, 21, 3937. [Google Scholar] [CrossRef] [PubMed]
- Kranevald, F.C. A Poultry Disease in the Dutch East Indies. Ned. Indisch. Bl. Diergeneeskd. 1926, 38, 48–51. [Google Scholar]
- Doyle, T.M. A Hithero Unrecorded Disease of Fowls Due to a Filter-Passing Virus—ScienceOpen. J. Comp. Pathol. Ther. 1927, 40, 144–169. [Google Scholar]
- Doyle, T.M. The Virus Diseases of Animals with Special Reference to Those of Poultry. J. Comp. Pathol. Ther. 1933, 46, 90–107. [Google Scholar] [CrossRef]
- Doyle, T.M. Newcastle Disease of Fowls. J. Comp. Pathol. Ther. 1935, 48, 1–20. [Google Scholar] [CrossRef]
- Edwards, J.T. A New Fowl Disease. Annual Report of Institute of Veterinary Science. Muktheswar 1928, 14–15. [Google Scholar]
- Alexander, D. Newcastle Disease, Other Avian Paramyxoviruses, and Pneumo Virus Infection. In Diseases of Poultry; Saif, Y.M., Ed.; Blackwell Publisher: Ames, IA, USA, 2008; pp. 75–100. ISBN 978-0-8138-0718-8. [Google Scholar]
- Lamb, R.A.; Parks, D.G. Paramyxoviridae: The Viruses and Their Replication. In Fields Virology, 5th ed.; Fields, B.N., Knipe, D.N., Howle, P.M., Eds.; Lippincott, Williams, and Wilkins: Philadelphia, PA, USA, 2007; pp. 1449–1496. [Google Scholar]
- García-Sastre, A.; Cabezas, J.A.; Villar, E. Proteins of Newcastle Disease Virus Envelope: Interaction between the Outer Hemagglutinin-Neuraminidase Glycoprotein and the Inner Non-Glycosylated Matrix Protein. Biochim. Biophys. Acta 1989, 999, 171–175. [Google Scholar] [CrossRef]
- Krishnamurthy, S.; Samal, S.K. Nucleotide Sequences of the Trailer, Nucleocapsid Protein Gene and Intergenic Regions of Newcastle Disease Virus Strain Beaudette C and Completion of the Entire Genome Sequence. J. Gen. Virol. 1998, 79 Pt 10, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Samson, A.C.; Emmerson, P.T. Nucleotide Sequence of the 5′-Terminus of Newcastle Disease Virus and Assembly of the Complete Genomic Sequence: Agreement with the “Rule of Six. ” Arch. Virol. 1998, 143, 1993–2002. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, O.; Peeters, B. Complete Nucleotide Sequence of Newcastle Disease Virus: Evidence for the Existence of a New Genus within the Subfamily Paramyxovirinae. J. Gen. Virol. 1999, 80 Pt 1, 131–136. [Google Scholar] [CrossRef]
- Lamb, R.A.; Parks, D.G. Paramyxoviridae: The Viruses and Their Replication. In Fields Virology, 3rd ed.; Fields, B.N., Knipe, D.M., Howley, P.M., Eds.; Lippincott, Williams, and Wilkins: Philadelphia, PA, USA, 1996. [Google Scholar]
- Alexander, D.J.; Senne, D.A. Newcastle Disease Virus and Other Avian Paramyxoviruses. In A Laboratory Manual for the Isolation, Identification and Characterization of Avian Pathogens, 5th ed.; Swayne, D.E., Glisson, J.R., Eds.; American Association of Avian Pathologists: Jacksonville, FL, USA, 2008; pp. 135–141. [Google Scholar]
- Susta, L.; Miller, P.J.; Afonso, C.L.; Brown, C.C. Clinicopathological Characterization in Poultry of Three Strains of Newcastle Disease Virus Isolated from Recent Outbreaks. Vet. Pathol. 2011, 48, 349–360. [Google Scholar] [CrossRef]
- Abdisa, T.; Tagesu, T. Review on Newcastle Disease of Poultry and Its Public Health Importance. Vet. Sci. Technol. 2017, 8, 441. [Google Scholar] [CrossRef]
- Alazawy, A.K.; Al Ajeeli, K.S. Isolation and Molecular Identification of Wild Newcastle Disease Virus Isolated from Broiler Farms of Diyala Province, Iraq. Vet. World 2020, 13, 33–39. Available online: https://www.veterinaryworld.org/Vol.13/January-2020/5.html (accessed on 3 March 2025). [CrossRef] [PubMed]
- Terregino, C.; Capua, I. Conventional Diagnosis of Avian Influenza. In Avian Influenza and Newcastle Disease: A Field and Laboratory Manual; Capua, I., Alexander, D.J., Eds.; Springer: Milan, Italy, 2009; pp. 73–85. ISBN 978-88-470-0826-7. [Google Scholar]
- Khatun, M.; Islam, S.; Ershaduzzaman, M.; Islam, H.; Yasmin, S.; Hossen, A.; Hasan, M. Economic Impact of Newcastle Disease on Village Chickens—A Case of Bangladesh. J. Econ. Bus. 2018, 1, 358–367. [Google Scholar]
- Rehan, M.; Aslam, A.; Khan, M.-R.; Abid, M.; Hussain, S.; Umber, J.; Anjum, A.; Hussain, A. Potential Economic Impact of Newcastle Disease Virus Isolated from Wild Birds on Commercial Poultry Industry of Pakistan: A Review. Hosts Viruses 2019, 6, 1–15. [Google Scholar] [CrossRef]
- Kalaria, V.A.; Prajapati, K.; Javia, B.B.; Bhadaniya, A.R.; Fefar, D.H.; Vagh, A.A.; Trangadiya, B.J.; Padodara, R.J.; Mokaria, K.N.; Kumbhani, T.R. An Economical Impact of Newcastle Disease Outbreaks in Various Commercial Broiler Chicken Farms During 2020-21 in Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 411–420. [Google Scholar] [CrossRef]
- Sharma, R.; Saran, S.; Yadav, A.S.; Kumar, S.; Verma, M.R.; Kumar, D.; Tyagi, J.S. Economic Losses Due to Newcastle Disease in Layers in Subtropical India. Indian J. Anim. Sci. 2023, 93, 422–426. [Google Scholar] [CrossRef]
- Mishra, U. Present Status of Poultry in Nepal. In Newcastle Disease in Village Chickens, Control with Thermostable Oral Vaccines: Proceedings of an International Workshop of ACIAR, Kuala Lumpur, Malaysia, 6–10 October 1991; CABI: Egham, UK, 1992. [Google Scholar]
- Antipas, B.B.; Bidjeh, K.; Youssouf, M.L. Epidemiology of Newcastle disease and its economic impact in chad. Eur. J. Exp. Bio. 2012, 2, 2286–2292. [Google Scholar]
- Munir, M.; Zohari, S.; Abbas, M.; Berg, M. Sequencing and analysis of the complete genome of Newcastle disease virus isolated from a commercial poultry farm in 2010. Arch. Viro. 2012, 157, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Siddique, N.; Naeem, K.; Abbas, M.A.; Ali Malik, A.; Rashid, F.; Rafique, S.; Ghafar, A.; Rehman, A. Sequence and phylogenetic analysis of virulent Newcastle disease virus isolates from Pakistan during 2009–2013 reveals circulation of new sub genotype. Virology 2013, 444, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Khorajiya, J.H.; Joshi, B.P.; Mathakiya, R.A.; Prajapati, K.S.; Sipai, S.H. Economic Impact of Genotype-XIII Newcastle Disease Virus Infection on Commercial Vaccinated Layer Farms in India. Int. J. Livest. Res. 2018, 8, 280–288. [Google Scholar] [CrossRef]
- Almubarak, A.I. Molecular and biological characterization of some circulating strains of Newcastle disease virus in broiler chickens from Eastern Saudi Arabia in 2012–2014. Vet. World 2019, 12, 1668. [Google Scholar] [CrossRef]
- Brandly, C.A.; Hanson, R.P. Variables and Correlations in Laboratory Procedures for Newcastle Disease Diagnosis. Cornell Vet. 1947, 37, 324–336. [Google Scholar]
- Bang, F.B.; Libert, R. Agglutination of Red Cells Altered by the Action of Newcastle Disease Virus; the Effect of Chicken Sera from Infected Birds on Sensitized Cells. Bull. Johns Hopkins Hosp. 1949, 85, 416–430. [Google Scholar]
- Karzon, D.T.; Bang, F.B. The Pathogenesis of Infection with a Virulent (CG 179) and an Avirulent (B) Strain of Newcastle Disease Virus in the Chicken. I. Comparative Rates of Viral Multiplication. J. Exp. Med. 1951, 93, 267–284. [Google Scholar] [CrossRef]
- Beaudette, F.R. Current Literature on Newcastle Disease. In Proceedings of the 55th Annual Meeting of the United States Livestock Sanitary Association, Kansas City, MO, USA, 14 November 1951; pp. 108–174. [Google Scholar]
- Soller, M.; Heller, D.; Peleg, B.; Ron-kuper, N.; Hornstein, K. Genetic and Phenotypic Correlations between Immune Response to Escherichia coli and to Newcastle Disease Virus Vaccines. Poult. Sci. 1981, 60, 49–53. [Google Scholar] [CrossRef]
- Pitcovski, J.; Kedar, E.; Kauffman, J. Divergent Selection for Growth Rate in Broiler Chickens: Effects on the Body Composition and Physiological Characteristics. Poult. Sci. 1987, 66, 1043–1049. [Google Scholar]
- Zhou, H.; Lamont, S.J. Genetic Characterization of Biodiversity in Highly Inbred Chicken Lines by Microsatellite Markers. Anim. Genet. 1999, 30, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Minga, U.M.; Msoffe, P.L.; Gwakisa, P.S. Biodiversity (Variation) in Disease Resistance and in Pathogens Within Rural Chicken Populations. In Proceedings of the International Health Network for Family Poultry (INFD), World Poultry Congress, Istanbul, Turkey, 8 June 2004. [Google Scholar]
- Hassan, M.K.; Afify, M.A.; Aly, M.M. Genetic Resistance of Egyptian Chickens to Infectious Bursal Disease and Newcastle Disease. Trop. Anim. Health Prod. 2004, 36, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Walugembe, M.; Naazie, A.; Mushi, J.R.; Akwoviah, G.A.; Mollel, E.; Mang’enya, J.A.; Wang, Y.; Chouicha, N.; Kelly, T.; Msoffe, P.L.M.; et al. Genetic Analyses of Response of Local Ghanaian Tanzanian Chicken Ecotypes to a Natural Challenge with Velogenic Newcastle Disease Virus. Animals 2022, 12, 2755. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.J.; Saif, Y.M.; Nestor, K.E.; Emmerson, D.A.; Patterson, R.A. Genetic Variation in Resistance of Turkeys to Experimental Infection with Newcastle Disease Virus. Avian Dis. 1992, 36, 561–565. [Google Scholar] [CrossRef]
- Withanage, G.S.K.; Wigley, P.; Kaiser, P.; Mastroeni, P.; Brooks, H.; Powers, C.; Beal, R.; Barrow, P.; Maskell, D.; McConnell, I. Cytokine and Chemokine Responses Associated with Clearance of a Primary Salmonella Enterica Serovar Typhimurium Infection in the Chicken and in Protective Immunity to Rechallenge. Infect. Immun. 2005, 73, 5173–5182. [Google Scholar] [CrossRef]
- Schilling, M.A.; Memari, S.; Cattadori, I.M.; Katani, R.; Muhairwa, A.P.; Buza, J.J.; Kapur, V. Innate Immune Genes Associated With Newcastle Disease Virus Load in Chick Embryos from Inbred and Outbred Lines. Front. Microbiol. 2019, 10, 1432. [Google Scholar] [CrossRef]
- Mpenda, F.N.; Keambou, C.T.; Kyallo, M.; Pelle, R.; Lyantagaye, S.L.; Buza, J. Polymorphisms of the Chicken Mx Gene Promoter and Association with Chicken Embryos’ Susceptibility to Virulent Newcastle Disease Virus Challenge. BioMed Res. Int. 2019, 2019, 1486072. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Z.; Wang, J.; Jian, Y.; Lu, H.; Ma, H.; Wang, S.; Zeng, W.; Zhang, T. Targeted Knockout of Mx in the DF-1 Chicken Fibroblast Cell Line Impairs Immune Response against Newcastle Disease Virus. Poult. Sci. 2023, 102, 102855. [Google Scholar] [CrossRef] [PubMed]
- Kapczynski, D.R.; Afonso, C.L.; Miller, P.J. Immune Responses of Poultry to Newcastle Disease Virus. Dev. Comp. Immunol. 2013, 41, 447–453. [Google Scholar] [CrossRef]
- Qu, H.; Yang, L.; Meng, S.; Xu, L.; Bi, Y.; Jia, X.; Li, J.; Sun, L.; Liu, W. The Differential Antiviral Activities of Chicken Interferon α (ChIFN-α) and ChIFN-β Are Related to Distinct Interferon-Stimulated Gene Expression. PLoS ONE 2013, 8, e59307. [Google Scholar] [CrossRef]
- Wilden, H.; Schirrmacher, V.; Fournier, P. Important Role of Interferon Regulatory Factor (IRF)-3 in the Interferon Response of Mouse Macrophages upon Infection by Newcastle Disease Virus. Int. J. Oncol. 2011, 39, 493–504. [Google Scholar] [CrossRef]
- Schat, K.A.; Skinner, M.A. Avian Immunosuppressive Diseases and Immune Evasion. In Avian Immunology, 3rd ed.; Kaspers, B., Schat, K.A., Göbel, T.W., Vervelde, L., Eds.; Academic Press: Boston, MA, USA, 2022; pp. 387–417. ISBN 978-0-12-818708-1. [Google Scholar]
- Zhang, J.; Kaiser, M.G.; Deist, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Transcriptome Analysis in Spleen Reveals Differential Regulation of Response to Newcastle Disease Virus in Two Chicken Lines. Sci. Rep. 2018, 8, 1278. [Google Scholar] [CrossRef]
- Saelao, P.; Wang, Y.; Gallardo, R.A.; Lamont, S.J.; Dekkers, J.M.; Kelly, T.; Zhou, H. Novel Insights into the Host Immune Response of Chicken Harderian Gland Tissue during Newcastle Disease Virus Infection and Heat Treatment. BMC Vet. Res. 2018, 14, 280. [Google Scholar] [CrossRef] [PubMed]
- Del Vesco, A.P.; Jang, H.J.; Monson, M.S.; Lamont, S.J. Role of the Chicken Oligoadenylate Synthase-like Gene during in Vitro Newcastle Disease Virus Infection. Poult. Sci. 2021, 100, 101067. [Google Scholar] [CrossRef]
- Zhang, J.; Kaiser, M.G.; Herrmann, M.S.; Gallardo, R.A.; Bunn, D.A.; Kelly, T.R.; Dekkers, J.C.M.; Zhou, H.; Lamont, S.J. Different Genetic Resistance Resulted in Distinct Response to Newcastle Disease Virus. Iowa State Univ. Anim. Ind. Rep. 2017, 14. [Google Scholar] [CrossRef]
- Vanamamalai, V.K.; Priyanka, E.; Kannaki, T.R.; Sharma, S. Integrated Analysis of Genes and Long Non-Coding RNAs in Trachea Transcriptome to Decipher the Host Response during Newcastle Disease Challenge in Different Breeds of Chicken. Int. J. Biol. Macromol. 2023, 253, 127183. [Google Scholar] [CrossRef]
- Dunnington, E.A.; Larsen, C.T.; Gross, W.B.; Siegel, P.B. Antibody Responses to Combinations of Antigens in White Leghorn Chickens of Different Background Genomes and Major Histocompatibility Complex Genotypes. Poult. Sci. 1992, 71, 1801–1806. [Google Scholar] [CrossRef] [PubMed]
- Norup, L.R.; Dalgaard, T.S.; Pedersen, A.R.; Juul-Madsen, H.R. Assessment of Newcastle Disease-Specific T Cell Proliferation in Different Inbred MHC Chicken Lines. Scand. J. Immunol. 2011, 74, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.A.; Katani, R.; Memari, S.; Cavanaugh, M.; Buza, J.; Radzio-Basu, J.; Mpenda, F.N.; Deist, M.S.; Lamont, S.J.; Kapur, V. Transcriptional Innate Immune Response of the Developing Chicken Embryo to Newcastle Disease Virus Infection. Front. Genet. 2018, 9, 61. [Google Scholar] [CrossRef] [PubMed]
- Schilling, M.A.; Memari, S.; Cavanaugh, M.; Katani, R.; Deist, M.S.; Radzio-Basu, J.; Lamont, S.J.; Buza, J.J.; Kapur, V. Conserved, Breed-Dependent, and Subline-Dependent Innate Immune Responses of Fayoumi and Leghorn Chicken Embryos to Newcastle Disease Virus Infection. Sci. Rep. 2019, 9, 7209. [Google Scholar] [CrossRef] [PubMed]
- Hako Touko, B.A.; Keambou, T.C.; Han, J.M.; Bembide, C.; Cho, C.Y.; Skilton, R.A.; Djikeng, A.; Ogugo, M.; Manjeli, Y.; Tebug Tumassang, T.; et al. The Major Histocompatibility Complex B (MHC-B) and QTL Microsatellite Alleles of Favorable Effect on Antibody Response against the Newcastle Disease. Int. J. Genet. Res. 2013, 1, 1–8. [Google Scholar]
- Mpenda, F.N.; Tiambo, C.K.; Kyallo, M.; Juma, J.; Pelle, R.; Lyantagaye, S.L.; Buza, J. Association of LEI0258 Marker Alleles and Susceptibility to Virulent Newcastle Disease Virus Infection in Kuroiler, Sasso, and Local Tanzanian Chicken Embryos. J. Pathog. 2020, 2020, 5187578. [Google Scholar] [CrossRef]
- Hako Touko, B.A.; Keambou Tiambo, C.; Han, J.-M.; Bembide, C.; Skilton, R.A.; Ogugo, M.; Manjeli, Y.; Osama, S.; Cho, C.-Y.; Djikeng, A. Molecular Typing of the Major Histocompatibility Complex B Microsatellite Haplotypes in Cameroon Chicken. J. Pathog. 2015, 56, 47–54. [Google Scholar] [CrossRef]
- Yonash, N.; Cheng, H.H.; Hillel, J.; Heller, D.E.; Cahaner, A. DNA Microsatellites Linked to Quantitative Trait Loci Affecting Antibody Response and Survival Rate in Meat-Type Chickens. Poult. Sci. 2001, 80, 22–28. [Google Scholar] [CrossRef]
- Zhang, G.X.; Fan, Q.C.; Zhang, T.; Wang, J.Y.; Wang, W.H.; Xue, Q.; Wang, Y.J. Genome-wide association study of growth traits in the Jinghai Yellow chicken. Genet. Mol. Res. 2015, 30, 15331–15338. [Google Scholar] [CrossRef] [PubMed]
- Rowland, K.; Wolc, A.; Gallardo, R.A.; Kelly, T.; Zhou, H.; Dekkers, J.C.M.; Lamont, S.J. Genetic Analysis of a Commercial Egg Laying Line Challenged with Newcastle Disease Virus. Front. Genet. 2018, 9, 326. [Google Scholar] [CrossRef]
- Saelao, P.; Wang, Y.; Chanthavixay, G.; Gallardo, R.A.; Wolc, A.; Dekkers, J.C.M.; Lamont, S.J.; Kelly, T.; Zhou, H. Genetics and Genomic Regions Affecting Response to Newcastle Disease Virus Infection under Heat Stress in Layer Chickens. Genes 2019, 10, 61. [Google Scholar] [CrossRef]
- Walugembe, M.; Mushi, J.R.; Amuzu-Aweh, E.N.; Chiwanga, G.H.; Msoffe, P.L.; Wang, Y.; Saelao, P.; Kelly, T.; Gallardo, R.A.; Zhou, H.; et al. Genetic Analyses of Tanzanian Local Chicken Ecotypes Challenged with Newcastle Disease Virus. Genes 2019, 10, 546. [Google Scholar] [CrossRef]
- Walugembe, M.; Amuzu-Aweh, E.N.; Botchway, P.K.; Naazie, A.; Aning, G.; Wang, Y.; Saelao, P.; Kelly, T.; Gallardo, R.A.; Zhou, H.; et al. Genetic Basis of Response of Ghanaian Local Chickens to Infection with a Lentogenic Newcastle Disease Virus. Front. Genet. 2020, 11, 739. [Google Scholar] [CrossRef] [PubMed]
- Habimana, R.; Ngeno, K.; Okeno, T.O.; Hirwa, C.D.A.; Keambou Tiambo, C.; Yao, N.K. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda. Front. Genet. 2021, 12, 723980. [Google Scholar] [CrossRef]
- Girma, M.; Morris, K.M.; Sutton, K.; Esatu, W.; Solomon, B.; Dessie, T.; Psifidi, A.; Vervelde, L.; Hanotte, O.; Banos, G.; et al. Genomic Markers Associated with Antibody Response to Newcastle Disease Virus of Sasso Chickens Raised in Ethiopia. S. Afr. J. Anim. Sci. 2023, 53, 728–736. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, T.; Zhang, G.; Wang, J.; Han, K.; Wang, Y.; Zhang, Y. Genome-Wide Association Study of Antibody Level Response to NDV and IBV in Jinghai Yellow Chicken Based on SLAF-Seq Technology. J. Appl. Genet. 2015, 56, 365–373. [Google Scholar] [CrossRef]
- Flint, A.P.F.; Woolliams, J.A. Precision Animal Breeding. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 573–590. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L.; De Figueiredo Silva, F.; Trott, J.F.; Zilberman, D. Genetic Engineering of Livestock: The Opportunity Cost of Regulatory Delay. Annu. Rev. Anim. Biosci. 2021, 9, 453–478. [Google Scholar] [CrossRef]
- Doerge, R.W. Mapping and Analysis of Quantitative Trait Loci in Experimental Populations. Nat. Rev. Genet. 2002, 3, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, E.S.; Broadhead, C.; Combes, R.D. The Implications of Microarray Technology for Animal Use in Scientific Research. Altern. Lab. Anim. 2002, 30, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Looi, F.Y.; Baker, M.L.; Townson, T.; Richard, M.; Novak, B.; Doran, T.J.; Short, K.R. Creating Disease Resistant Chickens: A Viable Solution to Avian Influenza? Viruses 2018, 10, 561. [Google Scholar] [CrossRef]
- Shakweer, W.M.E.; Krivoruchko, A.Y.; Dessouki, S.M.; Khattab, A.A. A Review of Transgenic Animal Techniques and Their Applications. J. Genet. Eng. Biotechnol. 2023, 21, 55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Baltenweck, I.; Dekkers, J.; Gallardo, R.; Kayang, B.B.; Kelly, T.; Msoffe, P.L.; Muhairwa, A.; Mushi, J.; Naazie, A.; et al. Feed the Future Innovation Lab for Genomics to Improve Poultry: A Holistic Approach to Improve Indigenous Chicken Production Focusing on Resilience to Newcastle Disease. Worlds Poult. Sci. J. 2024, 80, 273–297. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for Industry on Regulation of Genetically Engineered Animals Containing Heritable Recombinant DNA Constructs; Food and Drug Administration: Silver Spring, MD, USA, 2009. [Google Scholar]
- Qin, L.; Gao, Y.; Pan, W.; Deng, X.; Sun, F.; Li, K.; Qi, X.; Gao, H.; Liu, C.-J.; Wang, X. Investigation of Co-Infection of ALV-J with REV, MDV, CAV in Layer Chicken Flocks in Some Regions of China. Chin. J. Prev. Vet. Med. 2010, 32, 90–93. [Google Scholar]
- Das, A.K.; Niang, H.; Sahoo, A.K.; Kumar, S.; Das, D. Retrospect of Breeding for Genetic Resistance to Diseases in Poultry and Farm Animals. Indian J. Anim. Health 2019, 58, 21–44. [Google Scholar] [CrossRef]
- Wang, S.; Qu, Z.; Huang, Q.; Zhang, J.; Lin, S.; Yang, Y.; Meng, F.; Li, J.; Zhang, K. Application of Gene Editing Technology in Resistance Breeding of Livestock. Life 2022, 12, 1070. [Google Scholar] [CrossRef] [PubMed]
Sl. No | Name of the Candidate Gene | Role | References |
---|---|---|---|
1 | Roundabout guidance receptor 1 and 2 (ROBO1 and ROBO2 genes) | These genes play a role in tissue organization and immune cell migration. ROBO1/2 has been linked to antiviral defense mechanisms and regulates the immune response. | [43] |
2 | Myxovirus resistance gene (Mx) | The Mx gene produces a GTPase that inhibits the replication of RNA viruses, including NDV. It is a well-known antiviral gene with polymorphisms associated with illness resistance in chickens. | [86,87,100] |
3 | Chemokine C-C motif ligand 4 (CCL4) gene | The CCL4 is a pro-inflammatory chemokine that attracts immune cells such as T cells and macrophages to infection sites. Elevated expression is connected with increased resistance. | [85] |
4 | Interferon Regulatory Factor (IRF) genes—IRF3, IRF7, and IRF8 | These transcription factors are required for the induction of interferons and subsequent antiviral genes. They orchestrate the early innate immune responses to NDV infection. | [87,90,91,100] |
5 | Eukaryotic translation initiation factor 2 (eIF2) gene family | The eIF2 gene is involved in both protein synthesis and stress response. During viral infection, it alters host translation to promote antiviral responses and prevent viral protein synthesis. | [20,21,92,95,100] |
6 | Oligoadenylate synthase-like (OASL), | The OASL is a member of the interferon-stimulated gene family. It stimulates RNase L, which degrades viral RNA and contributes to the suppression of NDV replication. | [25,94] |
7 | Major Histocompatibility Complex (MHC)-B13 and B21 | These MHC class I and II alleles are related with improved antigen presentation and immunological response. B21 is commonly associated with NDV resistance. | [97] |
8 | Major Histocompatibility Complex (MHC)-B12 | Unlike B21, B12 is frequently linked to vulnerability to NDV. Comparison with resistant haplotypes helps to understand host–pathogen interactions. | [98] |
9 | Major Histocompatibility Complex (MHC) and LEI0258 marker linked with MHC | The LEI0258 is a microsatellite marker that is significantly related with the chicken MHC region. It functions as a genetic marker for identifying MHC haplotypes associated with disease resistance. | [100,101,102,103] |
Chr/LG * | Probable Candidate Genes | Species/Breed/Type | QTL/SNP | References |
---|---|---|---|---|
Chr 1 | CDC123, CAMK1d, and CCDC3. | Commercial Brown laying chicken | rs316767446 | [107] |
FAT3, SPRY2, MIR17 | Ghanaian Local Chickens | AX-75376474, AX-75297835, AX-75297834 | [109] | |
CDC16, ZBED1, MX1, GRB2 | Indigenous Chicken in Rwanda | rs314787954, rs13623466, rs13910430, rs737507850 | [110] | |
FOXP2 | Sasso Chickens in Ethiopia | rs316795557 | [111] | |
Chr 2 | - | Commercial broiler chicken | ADL0146 | [104] |
CHORDC1, JAZF1 | Ghanaian Local Chickens | AX-76076573 | [109] | |
CWC22, MIR7474, FAM133B, CDK6 | AX-76057582 | |||
ITGA9 | AX-76103078 | |||
Chr 3 | B3GALNT2, GPR137B, NTPCR | Commercial egg laying chicken | AX-76468260 | [106] |
Chr 4 | PDGFC | Jinghai Yellow Chicken | rs420701988 | [112] |
POF1B | Ghanaian Local Chickens | AX-76755933 | [109] | |
Chr 5 | GALC | Ghanaian Local Chickens | AX-76842268 | [109] |
CEP170B | Sasso Chickens in Ethiopia | rs313761644 | [111] | |
Chr 7 | CCDC141 | Ghanaian Local Chickens | AX-76984929 | [109] |
GTF2A1, PIK3CA, TBL1XR1, STK17B, STAT4, | AX-77054277 | |||
Chr 9 | ZC3H14 | Ghanaian Local Chickens | AX-80796104 | [109] |
APOOL, MIR6704, LEKR1, PTX3, SSR3 | AX-77162202 | |||
Chr 10 | ACTB | Commercial egg laying chicken | AX-75608938 | [106] |
LINGO1, HMG20A | AX-75605132 | |||
Chr 12 | LRRN1 | Jinghai Yellow Chicken | rs1218289310 | [112] |
Plexin B1 | rs1211307701, rs1211307711 | |||
Chr 13 | - | Sasso Chickens in Ethiopia | rs733628728 | [111] |
Chr 15 | SNRPD3 | Ghanaian Local Chickens | AX-75846279 | [109] |
Chr 17 | VAV2 | AX-75874883 | [109] | |
Chr 21 | TARDBP, APITD1, CASZ1 | Commercial egg laying chicken | AX-76244799 | [106] |
SPRY2, MIR17, VAMP3, PHF13 | Ghanaian Local Chickens | AX-76244242 | [109] | |
Chr 24 | TIRAP ETS1 | Tanzanian Local Chicken Ecotypes | AX-76312211, AX-76312344, AX-76311970 | [108] |
Chr 24 | TIRAP (4), SRPRA, KIRREL3 (4), ST3GAL4, EI24 (4), FAM118B (5), DCPS (3), STT3A, CHEK1, FOXRED1 | Commercial Brown laying chicken | rs14292128 | [107] |
KIRREL3 (4), ST3GAL4 | rs315615997 | |||
KIRREL3 | rs16192874, rs315836090, rs315093440, s314396434, rs318146300, s316420264, rs318146300, rs316424273 | |||
ETS1 | rs314541596, rs14292586, rs312349782 | |||
ARHGAP32 | rs16193617 | |||
ETS1, FLI1, KCNJ1, 5S_rRNA | rs316089514 | |||
ETS1, FLI1, KCNJ1, KCNJ5, 5S_rRNA | rs315752152, rs315834610 | |||
- | rs312459125, rs315334251, rs14292586, rs314510760, rs315406121, rs317888742, rs313717240, rs318216384, rs316424273, rs316882370, rs15212279, rs15212295, rs312419519, rs316420264, rs316132202, rs315406121, rs313717240 | |||
Chr 27 | PJA2, FER, SLC25A46, EFNA5,DDX42 | Ghanaian Local Chickens | AX-76359725 | [109] |
Chrs 30, 33 | - | Sasso Chickens in Ethiopia | Two unidentified SNPs | [111] |
LG 31 | ADL0290 | Commercial broiler chicken | - | [104] |
Chr Z | SETBP1 | Jinghai Yellow Chicken | rsZ2494661, rsZ2494710 | [112] |
TBX6 | Ghanaian Local Chickens | AX-77227276 | [109] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, T.A.; Palani, S.; Ramasamy, S.; Karuppusamy, S.; Peters, S.O.; Muthusamy, M. Genetic Resistance to Newcastle Disease in Poultry: A Narrative Review. Poultry 2025, 4, 40. https://doi.org/10.3390/poultry4030040
Kannan TA, Palani S, Ramasamy S, Karuppusamy S, Peters SO, Muthusamy M. Genetic Resistance to Newcastle Disease in Poultry: A Narrative Review. Poultry. 2025; 4(3):40. https://doi.org/10.3390/poultry4030040
Chicago/Turabian StyleKannan, Thiruvenkadan Aranganoor, Srinivasan Palani, Saravanan Ramasamy, Sivakumar Karuppusamy, Sunday Olusola Peters, and Malarmathi Muthusamy. 2025. "Genetic Resistance to Newcastle Disease in Poultry: A Narrative Review" Poultry 4, no. 3: 40. https://doi.org/10.3390/poultry4030040
APA StyleKannan, T. A., Palani, S., Ramasamy, S., Karuppusamy, S., Peters, S. O., & Muthusamy, M. (2025). Genetic Resistance to Newcastle Disease in Poultry: A Narrative Review. Poultry, 4(3), 40. https://doi.org/10.3390/poultry4030040