Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Site
2.2. Collection of Seeds
2.3. Pre-Sowing Treatments
2.4. Germination Studies
2.5. Seedling Growth Studies
2.6. Data Analysis
3. Results
3.1. Effect of Seed Pre-Sowing Treatments on Germination Attributes
3.2. Effect of Pre-Sowing Treatments on Seedling Growth
3.2.1. Shoot, Root, and Total Seedling Length
3.2.2. Seedling Vigor Index
3.2.3. Collar and Root Diameter of Seedlings
3.2.4. Number of Branches and Leaves per Seedling
3.2.5. Fresh Shoot Weight, Root Weight, and Root Shoot Ratio
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
T | IG | G% | GC | GE | GI | GR | GV | MDG | PV | MGT |
---|---|---|---|---|---|---|---|---|---|---|
T1 | 21.5 bcd | 64.9 d | 79.8 de | 22.9 cd | 24.5 f | 50.1 c | 9.9 ab | 2.1 bc | 4.0 a | 15.7 bc |
T2 | 19.3 def | 66.5 cd | 80.9 cde | 34.7 a | 29.6 cdef | 52.5 c | 8.4 abc | 2.3 ab | 5.0 a | 14.7 cd |
T3 | 19.0 def | 61.7 de | 80.9 cde | 22.0 cd | 26.8 def | 46.4 c | 7.1 abc | 1.8 ef | 3.5 a | 13.0 de |
T4 | 18.5 efg | 65.8 cd | 78.5 e | 19.3 de | 26.9 cdef | 56.4 bc | 9.3 ab | 2.6 a | 3.3 ab | 14.3 cd |
T5 | 17.8 ef | 86.1 a | 93.3 ab | 26.8 bc | 24.7 ef | 67.8 a | 7.1 abc | 2.1 bcd | 4.1 a | 11.8 e |
T6 | 16.8 f | 84.7 a | 95.0 a | 27.2 bc | 26.8 cdef | 63.3 ab | 5.7 c | 1.6 fg | 4.1 a | 17.2 ab |
T7 | 19.7 cdef | 64.3 d | 85.7 bcde | 19.3 de | 28.7 abcd | 50.0 c | 8.4 abc | 2.30 b | 3.6 a | 17.7 ab |
T8 | 19.3 def | 76.8 b | 88.6 abc | 25.8 bc | 29.7 abc | 55.9 bc | 6.6 bc | 1.9 cde | 4.1 a | 16.1 bc |
T9 | 20.5 bc | 67.8 cd | 86.4 bcd | 27.2 bc | 27.9 abcd | 52.0 c | 5.2 c | 1.1 h | 3.8 a | 17.8 ab |
T10 | 22.3 ab | 19.7 f | 38.5 g | 9.7 f | 29.0 abcd | 16.7 e | 5.1 bc | 1.6 fg | 1.6 c | 18.1 ab |
T11 | 23.8 b | 17.6 f | 32.6 g | 14.5 ef | 30.5 ab | 14.0 e | 5.1 bc | 1.4 gh | 2.0 bc | 18.7 a |
T12 | 23.0 ab | 21.5 f | 47.5 f | 11.8 f | 28.2 abcd | 29.0 d | 8.6 abc | 2.2 bc | 2.0 bc | 17.7 ab |
T13 | 18.7 def | 66.1 cd | 89.9 ab | 19.1 de | 28.9 abcd | 50.8 c | 7.5 abc | 2.0 cde | 3.8 a | 17.3 ab |
T14 | 18.8 def | 73.3 bc | 89.6 ab | 19.1 de | 32.1 a | 55.5 bc | 10.3 a | 2.0 bcde | 4.0 a | 17.5 ab |
T15 | 19.8 cdef | 81.5 ab | 89.9 ab | 30.4 ab | 27.4 cde | 50.9 c | 9.6 ab | 2.6 a | 3.8 a | 9.38 f |
T16 | 26.5 a | 55.9 e | 80.6 de | 26.2 bc | 25.8 def | 46.4 c | 7.6 abc | 1.8 def | 3.3 a | 15.7 bc |
SEM | 1.6 | 4.0 | 3.8 | 2.78 | 1.42 | 5.01 | 1.21 | 0.14 | 0.69 | 1.20 |
SED | 1.1 | 2.8 | 2.7 | 1.97 | 1.01 | 3.54 | 1.71 | 0.10 | 0.49 | 0.85 |
HSD | 3.6 | 8.2 | 7.8 | 5.6 | 2.91 | 10.21 | 3.48 | 0.29 | 1.42 | 2.44 |
References
- Ghani, A. Medicinal Plants of Bangladesh: Chemical Constituents and Uses; Asiatic Society of Bangladesh: Dhaka, Bangladesh, 1998; p. 460. [Google Scholar]
- Grigoriadou, K.; Krigas, N.; Sarropoulou, V.; Papanastasi, K.; Tsoktouridis, G.; Maloupa, E. In vitro propagation of medicinal and aromatic plants: The case of selected Greek species with conservation priority. In Vitro Cell. Dev. Biol.—Plant 2019, 55, 635–646. [Google Scholar] [CrossRef]
- Astutik, S.; Pretzsch, J.; Kimengsi, J.N. Asian Medicinal Plants’ Production and Utilization Potentials: A Review. Sustainability 2019, 11, 5483. [Google Scholar] [CrossRef]
- Dhyani, A.; Kadaverugu, R.; Nautiyal, B.P.; Nautiyal, M.C. Predicting the potential distribution of a critically endangered medicinal plant Lilium polyphyllum in Indian Western Himalayan Region. Reg. Environ. Change 2021, 21, 30. [Google Scholar] [CrossRef]
- Shen, T.; Yu, H.; Wang, Y.-Z. Assessing the impacts of climate change and habitat suitability on the distribution and quality of medicinal plant using multiple information integration: Take Gentiana rigescens as an example. Ecol. Indic. 2021, 123, 107376. [Google Scholar] [CrossRef]
- Singh, S.; Krishna, T.; Kamalraj, S.; Kuriakose, G.; Valayil, J.; Jayabaskaran, C. Phytomedicinal importance of Saraca asoca (Ashoka): An exciting past, an emerging present and a promising future. Curr. Sci. 2015, 109, 1790–1801. [Google Scholar] [CrossRef]
- Jadhav, A.N.; Bhutani, K.K. Ayurveda and gynaecological disorders. J. Ethnopharmacol. 2005, 97, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Ravikumar, K.; Ved, D. ‘Asoka’–An important medicinal plant, its market scenario and conservation measures in India. Curr. Sci. 2014, 107, 26–28. [Google Scholar]
- Ahmad, S.R.; Ghosh, P. A systematic investigation on flavonoids, catechin, β-sitosterol and lignin glycosides from Saraca asoca (Ashoka) having anti-cancer & antioxidant properties with no side effect. J. Indian Chem. Soc. 2022, 99, 100293. [Google Scholar] [CrossRef]
- Smitha, G. Vegetative propagation of Ashoka [Saraca asoca (Roxb.) de Wilde]-an endangered medicinal plant. Res. Crops 2013, 14, 274–283. [Google Scholar]
- Mirgal, A.B.; Gunaga, R.P.; Salunkhe, C.B. Seed size and its influence on germination, seedling growth and biomass in Saraca asoca (Roxb). De Wilde, critically endangered tree species of Western ghats, India. J. Appl. Nat. Sci. 2016, 8, 1599–1602. [Google Scholar] [CrossRef]
- Patwardhan, A.; Pimputkar, M.; Mhaskar, M.; Agarwal, P.; Barve, N.; Gunaga, R.; Mirgal, A.; Salunkhe, C.; Vasudeva, R. Distribution and Population Status of Threatened Medicinal Tree Saraca asoca (Roxb.) De Wilde from Sahyadri-Konkan Ecological Corridor. Curr. Sci. 2016, 111, 1500. [Google Scholar] [CrossRef]
- Smitha, G.R.; Das, M. Effect of seed moisture content, temperature and storage period on seed germination of Saraca asoca—An endangered medicinal plant. Med. Plants—Int. J. Phytomed. Relat. Ind. 2016, 8, 60. [Google Scholar] [CrossRef]
- Madhushree, S.I.; Raviraja Shetty, G.; Souravi, K.; Rajasekharan, P.E.; Ganapathi, M.; Ravi, C.S. Standardization of Seed and Vegetative Propagation Techniques in Saraca asoca (Roxb.) De Wilde: An Endangered Medicinal Plant. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1327–1335. [Google Scholar] [CrossRef]
- Ali, M.A.; Pan, T.K.; Gurung, A.B.; Farah, M.A.; Al-Hemaid, F.; Alanazi, K.M.; Elangbam, M.; Lee, J.; Pandey, S.K.; Oliur Rahman, M.; et al. Plastome of Saraca asoca (Detarioideae, Fabaceae): Annotation, comparison among subfamily and molecular typing. Saudi J. Biol. Sci. 2021, 28, 1487–1493. [Google Scholar] [CrossRef] [PubMed]
- Smitha, G.R.; Thondaiman, V. Reproductive biology and breeding system of Saraca asoca (Roxb.) De Wilde: A vulnerable medicinal plant. SpringerPlus 2016, 5, 2025. [Google Scholar] [CrossRef]
- IUCN. The IUCN Red List of Threatened Species. IUCN, Switzerland. Available online: https://www.iucn.org/ (accessed on 1 November 2023).
- Haridasan, K.; Sarmah, A.; Bhuyan, L.; Bisht, N. Medicinal plants sector in Arunachal Pradesh-an overview. Indian For. 2003, 129, 37–47. [Google Scholar]
- Murthy, S.; Mamata, B.; Shivananda, T. Saraca asoca—An endangered plant. Biomed 2008, 3, 224–228. [Google Scholar]
- Kumar, R.; Sharma, S.; Sharma, M. Growth and yield of natural-sweetener plant stevia as affected by pinching. Indian J. Plant Physiol. 2014, 19, 119–126. [Google Scholar] [CrossRef]
- Shirin, F.; Parihar, N.S.; Shah, S.N. Effect of Nutrient Media and KNO3 on Saraca asoca (Roxb.) Willd. Am. J. Plant Sci. 2015, 6, 3282–3292. [Google Scholar] [CrossRef]
- Jain, T.; Battaglia, M.; Han, H.; Graham, R.; Keyes, C.; Fried, J.; Sandquist, J. A Comprehensive Guide to Fuel Management Practices for Dry Mixed Conifer Forests in the Northwestern United States No. RMRS-GTR-292; Rocky Mountain Research Station: Ft. Collins, CO, USA, 2012. Available online: https://www.fs.usda.gov/treesearch/pubs/42150 (accessed on 7 August 2023).
- Razak, U.N.A.A.; Ong, C.B.; Yu, T.S.; Lau, L.K. In vitro micropropagation of Stevia rebaudiana Bertoni in Malaysia. Braz. Arch. Biol. Technol. 2014, 57, 23–28. [Google Scholar] [CrossRef]
- Shukla, G.; Chakravarty, S.; Panwar, P. Effect of date of collection and pre-sowing treatment on germination and initial seedling growth of Albizia procera (Roxb.) Benth. in Terai zone of West Bengal. Environ. Ecol. 2007, 25, 617–621. [Google Scholar]
- Shukla, G.; Chakravarty, S.; Panwar, P. Effect of growing media on germination and initial seedling growth of A. lebbeck in Terai zone of West Bengal. Environ. Ecol. 2007, 25, 949–950. [Google Scholar]
- Malla, S.; Shukla, G.; Chakravarty, S. Standardized pod collection time, pod length and pre-sowing treatment of Albizia lebbeck at terai zone of West Bengal, India. J. For. Res. 2010, 21, 338–342. [Google Scholar] [CrossRef]
- Shukla, G.; Chakravarty, S. Effect of date of collection and pod length of germination and seedling growth of A. procera (Roxb.) Benth. Seed Res. 2011, 39, 90–94. [Google Scholar]
- Vineeta; Shukla, G.; Pala, N.A.; Dobhal, S.; Chakravarty, S. Influence of seed priming on germination and seedling growth of Adeanthera pavonina in sub humid region of West Bengal, India. Indian J. Trop. Biodivers. 2018, 26, 87–91. [Google Scholar]
- Manohar, K.A.; Shukla, G.; Roy, B.; Chakravarty, S. Effects of plant growth regulators and growing media on propagation and field establishment of Stevia rebaudiana: A medicinal plant of commerce. CABI Agric. Biosci. 2022, 3, 4. [Google Scholar] [CrossRef]
- NMPB. Saraca asoca (Roxb.) De Wilde; National Medicinal Plants Board, Ministry of AYUSH, Government of India: New Delhi, India, 2022. Available online: https://nmpb.nic.in/medicinal_list (accessed on 1 November 2023).
- Haque, A.; Akon, M.; Islam, M.; Khalequzzaman, K.; Ali, M. Study of seed health, germination and seedling vigor of farmers produced rice seeds. Int. J. Sustain. Crop Prod. 2007, 2, 34–39. [Google Scholar]
- No. 21.1993; International Rules for Seed Testing. Supplement to Seed Science and Technology. ISTA: Wallisellen, Switzerland, 1993.
- Kader, M.A. A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. NSW 2005, 138, 65–75. [Google Scholar] [CrossRef]
- Anand, K.V.; Anugraga, A.R.; Kannan, M.; Singaravelu, G.; Govindaraju, K. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Mater. Lett. 2020, 271, 127792. [Google Scholar] [CrossRef]
- SPSS Inc. SPSS 7.5 for Windows Brief Guide; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Shukla, G.; Malla, S.; Chakravarty, S. Effect of different presowing treatments on germination and initial seedling growth of Terminalia arjuna in Terai Zone of West Bengal. Seed Res. 2008, 36, 183–186. [Google Scholar]
- Azad, S.; Musa, Z.A.; Matin, A. Effects of pre-sowing treatments on seed germination of Melia azedarach. J. For. Res. 2010, 21, 193–196. [Google Scholar] [CrossRef]
- Saleem, M.; Sajid, M.; Ahmed, Z.; Ahmed, S.; Ahmed, N.; Islam, S. Effect of seed soaking on seed germination and growth of bitter gourd cultivars. IOSR J. Agric. Vet. Sci. 2014, 6, 7–11. [Google Scholar] [CrossRef]
- Ogbu, J.; Awodoyin, R. Pre-sowing treatments of African oil bean (Pentaclethra macrophylla Benth.) seeds: Impact on dormancy break and germination enhancement. J. Trop. Biosci. 2017, 12, 21–26. [Google Scholar]
- Aliero, B. Effects of sulphuric acid, mechanical scarification and wet heat treatments on germination of seeds of African locust bean tree, Parkia biglobosa. Afr. J. Biotechnol. 2003, 3, 179–181. [Google Scholar] [CrossRef]
- Artola, A.; Carrillo-Castañeda, G.; de los Santos, G.G. Hydro priming: A strategy to increase Lotus corniculatus L. seed vigor. Seed Sci. Technol. 2003, 31, 455–463. [Google Scholar] [CrossRef]
- Afzal, I.; Hussain, B.; Basra, S.M.A.; Rehman, H. Priming with moringa leaf extract reduces imbibitional chilling injury in spring maize. Seed Sci. Technol. 2012, 40, 271–276. [Google Scholar] [CrossRef]
- Zulueta-Rodríguez, R.; Hernández-Montiel, L.; Murillo-Amador, B.; Rueda-Puente, E.; Capistrán, L.; Troyo-Diéguez, E.; Córdoba-Matson, M. Effect of Hydropriming and Biopriming on Seed Germination and Growth of Two Mexican Fir Tree Species in Danger of Extinction. Forests 2015, 6, 3109–3122. [Google Scholar] [CrossRef]
- Mensah, I.S.; Ekeke, C. Effects of Different Pretreatments and Seed Coat on Dormancy and Germination of Seeds of Senna obtusifolia (L.) H.S. Irwin & Barneby (Fabaceae). Int. J. Biol. 2016, 8, 77. [Google Scholar] [CrossRef]
- Malik, M.A.; Wani, A.H.; Mir, S.H.; Rehman, I.U.; Tahir, I.; Ahmad, P.; Rashid, I. Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol. Biochem. 2021, 165, 187–195. [Google Scholar] [CrossRef]
- Fitter, A.; Hay, R. Environmental Physiology of Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 1, p. 367. [Google Scholar]
- Li, X.; Jiang, H.; Liu, F.; Cai, J.; Dai, T.; Cao, W.; Jiang, D. Induction of chilling tolerance in wheat during germination by pre-soaking seed with nitric oxide and gibberellin. Plant Growth Regul. 2013, 71, 31–40. [Google Scholar] [CrossRef]
- Zhao, T.; Deng, X.; Xiao, Q.; Han, Y.; Zhu, S.; Chen, J. IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Ind. Crops Prod. 2020, 155, 112788. [Google Scholar] [CrossRef]
- Donovan, N. The Water Relations of Seed Pretreatments and Their Effects on the Germination of Radiata Pine Seeds. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2001. [Google Scholar]
- Idu, M.; Omonhinmin, A.C. Effect of oven—Heat and boiling on the germination and seedling development of Dichrostachys cinerea (L) Wight and Arn (Fabaceae). Agronomie 1999, 19, 671–676. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Q.; Wang, G.X.; Wang, X.D.; Guo, J.Y. Germination, osmotic adjustment, and antioxidant enzyme activities of gibberellin-pretreated Picea asperata seeds under water stress. New For. 2010, 39, 231–243. [Google Scholar] [CrossRef]
- Schelin, M.; Tigabu, M.; Eriksson, I.; Sawadogo, L.; Oden, P. Effects of scarification, gibberellic acid and dry heat treatments on the germination of Balanites aegyptica seeds from the Sudanian savanna in Burkina Faso. Seed Sci. Technol. 2003, 31, 605–617. [Google Scholar] [CrossRef]
- Hassan, F.; Fetouh, M. Seed germination criteria and seedling characteristics of Magnolia grandiflora L. trees after cold stratification treatments. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 235–241. [Google Scholar]
- Nkengurutse, J.; Khalid, A.; Mzabri, A.; Kakunze, A.; Masharabu, T.; Berrich, A. Germination Optimization Study of Five Indigenous Fabaceae Tree Species from Burundi Miombo Woodlands. J. Mater. Environ. Sci. 2016, 7, 4391–4402. [Google Scholar]
- Sharafizad, M.; Naderi, A.; Siadat, S.; Sakinejad, T.; Lak, S. Effect of salicylic acid pre-treatment on germination of wheat under drought stress. J. Agric. Sci. 2013, 5, 179–199. [Google Scholar]
- Shatpathy, P.; Kar, M.; Dwibedi, S.K.; Dash, A. Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 Induced Water Stress. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 907–924. [Google Scholar] [CrossRef]
- Gairola, K.; Nautiyal, A.; Dwivedi, A. Effect of temperatures and germination media on seed germination of Jatropha curcas Linn. Adv. Biores. 2011, 2, 66–71. [Google Scholar]
- Mrdja, J.; Crnobarac, J.; Dusanic, N.; Jocic, S.; Miklic, V. Germination energy as a parameter of seed quality in different sunflower genotypes. Genetika 2011, 43, 427–436. [Google Scholar] [CrossRef]
- Ray, S.; Vijayan, J.; Sarkar, R.K. Germination stage oxygen deficiency (GSOD): An emerging stress in the era of changing trends in climate and rice cultivation practice. Front. Plant Sci. 2016, 7, 671. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M. Seed Priming. In Seed Technology and Its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; Volume 1. [Google Scholar]
- Çetinbaş, M.; Koyuncu, F. Improving germination of Prunus avium L. seeds by gibberellic acid, potassium nitrate and thiourea. Hortic. Sci. 2011, 33, 119–123. [Google Scholar] [CrossRef]
- Jadhav, S.; Bhamburdekar, S. Effect of salicylic acid on germination performance in groundnut. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 224–227. [Google Scholar]
- Alamri, S.; Siddiqui, A.; Al-khaishani, A.; Ali, H. Response of salicylic acid on seed germination and physio-biochemical changes of wheat under salt stress. Acta Sci. Agric. 2018, 2, 36–42. [Google Scholar]
- Burman, U.; Garg, B.K.; Kathju, S. Interactive effects of thiourea and phosphorus on Clusterbean under water stress. Biol. Plant. 2004, 48, 61–65. [Google Scholar] [CrossRef]
- Rajjou, L.; Belghazi, M.; Huguet, R.; Robin, C.; Moreau, A.; Job, C.; Job, D. Proteomic investigation of the effect of salicylic acid on Arabidopsis seed germination and establishment of early defence mechanisms. Plant Physiol. 2006, 141, 910–923. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, S.; Park, C. Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytol. 2010, 188, 626–637. [Google Scholar] [CrossRef]
- Nadeem, M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Ashraf, M. Effect of some chemical treatments on seed germination and dormancy breaking in an important medicinal plant Ochradenus arabicus Chaudhary, Hill C. & AG Mill. Pak. J. Bot. 2012, 44, 1037–1040. [Google Scholar]
- Perveen, S.; Farooq, R.; Shahbaz, M. Thiourea-induced metabolic changes in two mung beans [Vigna radiata (L.) Wilczek] (Fabaceae) varieties under salt stress. Braz. J. Bot. 2016, 39, 41–54. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Gairola, S. Dormancy Regulating Chemicals Alleviate Innate Seed Dormancy and Promote Germination of Desert Annuals. J. Plant Growth Regul. 2017, 36, 300–311. [Google Scholar] [CrossRef]
- Goraya, G.; Ved, D. Medicinal Plants in India: An Assessment of their Demand and Supply; National Medicinal Plants Board: New Delhi, India, 2017.
- Alonso-Ramírez, A.; Rodríguez, D.; Reyes, D.; Jiménez, J.A.; Nicolás, G.; López-Climent, M.; Gómez-Cadenas, A.; Nicolás, C. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 2009, 150, 1335–1344. [Google Scholar] [CrossRef]
- Nathawat, N.S.; Nair, J.S.; Kumawat, S.M.; Yadava, N.S.; Singh, G.; Ramaswamy, N.K.; Sahu, M.P.; D’Souza, S.F. Effect of seed soaking with thiols on the antioxidant enzymes and photosystem activities in wheat subjected to water stress. Biol. Plant. 2007, 51, 93–97. [Google Scholar] [CrossRef]
- Asthir, B.; Kaur, R.; Bains, N.S. Variation of invertase activities in four wheat cultivars as influenced by thiourea and high temperature. Acta Physiol. Plant. 2015, 37, 1712. [Google Scholar] [CrossRef]
- Basra, S.; Zia, M.; Mehmood, T.; Afzal, I.; Khaliq, A. Comparison of different invigoration techniques in wheat (Triticum aestivum L.) seeds. Pak. J. Arid Agric. 2002, 5, 11–16. [Google Scholar]
- Chiu, K.Y.; Chen, C.L.; Sung, J.M. Effect of priming temperature on storability of primed sh-2 Sweet Corn Seed. Crop Sci. 2002, 42, 1996–2003. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Nyamugafata, P.; Clark, L.J.; Whalley, W.R.; Finch-Savage, W.E. Effects of ‘on-farm seed priming’ on consecutive daily sowing occasions on the emergence and growth of maize in semi-arid Zimbabwe. Field Crops Res. 2004, 89, 49–57. [Google Scholar] [CrossRef]
- Eskandari, H.; Kazemi, K. Effect of Seed Priming on Germination Properties and Seedling Establishment of Cowpea (Vigna sinensis). Not. Sci. Biol. 2011, 3, 113–116. [Google Scholar] [CrossRef]
- Prajith, T.M.; Anilkumar, C.; Kurup, R.; Baby, S.; Salim, N. Comparative analysis of seed development and desiccation aspects of Saraca asoca (Roxb.) W.J. De Wilde and Caesalpinia pulcherrima (L.) Sw. Asian J. Plant Sci. 2014, 13, 164–171. [Google Scholar] [CrossRef]
- Asgedom, H.; Becker, M. Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In Proceedings of the Deutscher Tropentag, Bonn, Germany, 9–11 October 2001; University of Bonn and ATSAF, Magrraf Publishers Press: Weickersheim, Germany, 2001. [Google Scholar]
- Farooq, M.; Basra, S.M.A.; Afzal, I.; Khaliq, A. Optimization of hydropriming techniques for rice seed invigoration. Seed Sci. Technol. 2006, 34, 507–512. [Google Scholar] [CrossRef]
- Sedghi, M.; Nemati, A.; Esmaielpour, B. Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emir. J. Food Agric. 2010, 22, 130. [Google Scholar] [CrossRef]
- Thakur, T.; Padwar, G.; Patel, D.; Bijalwan, A. Monitoring land use, species composition and diversity of moist tropical environ in Achanakmaar Amarkantak Biosphere reserve, India using satellite data. Biodivers. Int. J. 2019, 3, 162–172. [Google Scholar] [CrossRef]
- Sagwal, S. Forest Tree Seeds: Handbook; Scientific Publishers: Jodhpur, India, 2020; p. 99. [Google Scholar]
- Salisbury, F.; Ross, C. Plant Physiology, 4th ed.; CBS Publishers and Distributors: New Delhi, India, 1991; p. 540. [Google Scholar]
- Abha, M.K.; Shukla, G.; Chakraborty, M.; Kundu, A.; Maitra, S.; Chakravarty, S. Effect of pre-sowing seed treatments on germination behaviours of Saraca asoca (Roxb.) Willd. Med. Plants—Int. J. Phytomed. Relat. Ind. 2020, 12, 309. [Google Scholar] [CrossRef]
- Kundu, M.; Tiwari, S.; Haldkar, M. Collection, Germination and Storage of Seeds of Saraca asoca (Roxb.) Willd. J. Appl. Res. Med. Aromat. Plants 2020, 16, 100231. [Google Scholar] [CrossRef]
Treatments | |
---|---|
T1—Soaked in 180 ppm SA for 24 h | T9—Soaked in NW 24 h |
T2—Soaked in 120 ppm SA for 24 h | T10—Soaked in BW for 5 min |
T3—Soaked in 90 ppm SA for 24 h | T11—Soaked in BW for 3 min |
T4—Soaked in 30 ppm SA for 24 h | T12—Soaked in BW for 1 min |
T5—Rubbed seed coat with sandpaper (mechanical pre-sowing treatment) | T13—Soaked in 100 ppm Tu for 24 h |
T6—Soaked in HW (subsequently cooled) for 12 h | T14—Soaked in 200 ppm Tu for 24 h |
T7—Soaked in HW (subsequently cooled) for 24 h | T15—Soaked in 300 ppm Tu for 24 h |
T8—Soaked in NW for 12 h | T16—No pre-sowing treatment (control) |
SA—salicylic acid; ppm—parts per million; hr—hour; NW—normal water; BW—boiling water; m—minute; Tu—thiourea; HW—hot water |
Location | Latitude | Longitude | Altitude | No. of Trees |
---|---|---|---|---|
Rajbari Heritage Park, Cooch Behar, West Bengal | 26°19′37.01″ N | 89°23′22.98″ E | 46 m | 20 |
Nripendra Narayan Park, Cooch Behar, West Bengal | 26°19′32.55″ N | 89°26′59.91″ E | 45 m | 15 |
Rambhola High School, Cooch Behar, West Bengal | 26°20′01.01″ N | 89°26′37.12″ E | 44 | 05 |
Manidra Nath High School, Cooch Behar, West Bengal | 26°20′49.39″ N | 89°26′17.71″ E | 46 | 05 |
UBKV Campus, Cooch Behar, West Bengal | 26°24′13.70″ N | 89°23′05.85″ E | 43 | 02 |
Khagenhat, Dhupguri, West Bengal | 26°37′26.45″ N | 89°04′53.97″ E | 79 | 10 |
Bankura, West Bengal | 23°12′21.17″ N | 87°01′07.08″ E | 91 | 10 |
Treatments | Initiation of Germination (Days) | Germination (%) |
---|---|---|
T1 | 21.5 bcd | 64.9 d |
T2 | 19.3 def | 66.5 cd |
T3 | 19.0 def | 61.7 de |
T4 | 18.5 efg | 65.8 cd |
T5 | 17.8 ef | 86.1 a |
T6 | 16.8 f | 84.7 a |
T7 | 19.7 cdef | 64.3 d |
T8 | 19.3 def | 76.8 b |
T9 | 20.5 bc | 67.8 cd |
T10 | 22.3 ab | 19.7 f |
T11 | 23.8 b | 17.6 f |
T12 | 23.0 ab | 21.5 f |
T13 | 18.7 def | 66.1 cd |
T14 | 18.8 def | 73.3 bc |
T15 | 19.8 cdef | 81.5 ab |
T16 | 26.5 a | 55.9 e |
SEM | 1.6 | 4.0 |
SED | 1.1 | 2.8 |
HSD | 3.6 | 8.2 |
T | SL | RL | ||
---|---|---|---|---|
90 DAS | 365 DAS | 90 DAS | 365 DAS | |
T1 | 18.7 abc | 43.4 bc | 14.9 cdefg | 41.1 abc |
T2 | 19.6 abc | 59.7 ab | 21.4 a | 45.7 ab |
T3 | 19.3 abc | 54.6 bcd | 13.7 defg | 31.8 cd |
T4 | 19.5 abc | 42.7 cde | 13.7 defg | 33.4 bcd |
T5 | 21.7 ab | 47.5 bcd | 21.8 a | 33.0 cd |
T6 | 22.4 a | 53.8 abc | 18.7 abc | 28.6 d |
T7 | 19.2 abc | 48.3 bcd | 13.6 defg | 26.9 d |
T8 | 18.2 bc | 50.5 bcd | 17.6 abcde | 31.7 cd |
T9 | 18.8 abc | 52.4 bcd | 15.9 bcdef | 25.7 d |
T10 | 18.9 abc | 39.8 de | 13.3 efg | 24.0 d |
T11 | 18.3 bc | 42.0 cde | 16.6 abcdef | 25.8 d |
T12 | 18.8 abc | 43.2 cde | 17.6 abcde | 30.5 cd |
T13 | 18.2 bc | 42.7 cde | 12.2 fg | 32.4 cd |
T14 | 21.0 abc | 68.1 a | 21.8 a | 46.7 a |
T15 | 18.9 abc | 45.9 bcde | 14.0 defg | 30.4 cd |
T16 | 16.4 c | 33.7 e | 8.6 g | 21.4 d |
SEM | 1.2 | 7.1 | 2.33 | 5.99 |
SED | 0.9 | 5.0 | 1.64 | 4.24 |
HSD | 3.9 | 14.3 | 4.76 | 12.08 |
Treatment | 1st Year | 2nd Year | MEAN |
---|---|---|---|
T1 | 2060 abcd | 2241 cd | 2171 cd |
T2 | 1941 abcd | 2967 abcd | 2443 abcd |
T3 | 1752 bcd | 2813 abcd | 2254 cd |
T4 | 1494 de | 2731 abcd | 2105 d |
T5 | 3966 a | 3528 a | 3748 a |
T6 | 3093 b | 3421 a | 3279 b |
T7 | 1564 bcd | 2684 abcd | 2116 cd |
T8 | 2657 abcd | 2898 abcd | 2777 abc |
T9 | 1972 cd | 2579 bcd | 2300 bcd |
T10 | 534 ef | 759 e | 648 e |
T11 | 374 ef | 892 e | 616 e |
T12 | 520 ef | 1133 e | 798 e |
T13 | 1769 bcd | 2593 bcd | 2198 cd |
T14 | 3168 b | 2744 abcd | 2827 ab |
T15 | 2198 abcd | 2879 abcd | 2571 abcd |
T16 | 977 ef | 2123 d | 1541 d |
SEM | 236.05 | 346.22 | 187.08 |
SED | 333.82 | 489.63 | 264.57 |
HSD | 679.98 | 997.34 | 538.91 |
T | CD | RD | ||
---|---|---|---|---|
90 DAS | 365 DAS | 90 DAS | 365 DAS | |
T1 | 3.1 bc | 8.0 bc | 2.4 abc | 7.4 ab |
T2 | 3.5 ab | 10.9 ab | 2.7 ab | 7.5 ab |
T3 | 2.9 bc | 7.9 bc | 2.6 abc | 7.5 ab |
T4 | 2.6 c | 7.7 c | 2.5 abc | 6.8 abc |
T5 | 3.2 bc | 7.1 c | 2.0 bcde | 6.5 abc |
T6 | 3.1 bc | 7.2 c | 2.0 bcde | 6.8 abc |
T7 | 3.0 bc | 7.2 c | 1.6 de | 6.4 abc |
T8 | 2.9 bc | 7.8 bc | 2.4 abcd | 6.6 abc |
T9 | 2.8 bc | 7.1 c | 1.4 e | 6.5 abc |
T10 | 2.7 bc | 6.6 c | 1.6 cde | 6.0 bc |
T11 | 2.8 bc | 6.9 c | 2.0 bcde | 6.5 abc |
T12 | 3.1 bc | 7.2 c | 2.6 ab | 7.0 abc |
T13 | 2.9 bc | 7.2 c | 2.2 abcde | 5.5 c |
T14 | 4.4 a | 11.0 a | 3.0 a | 8.4 a |
T15 | 3.0 bc | 7.1 c | 2.1 bcde | 7.6 ab |
T16 | 2.4 c | 6.3 c | 1.3 e | 5.4 c |
SEM | 0.38 | 1.03 | 0.42 | 0.82 |
SED | 0.27 | 0.73 | 0.30 | 0.58 |
HSD | 0.78 | 2.07 | 0.86 | 1.66 |
T | NOB | NOL | ||
---|---|---|---|---|
180 DAS | 365 DAS | 90 DAS | 365 DAS | |
T1 | 1.0 b | 2.1 c | 10.8 abcde | 50.6 cd |
T2 | 1.1 ab | 4.0 ab | 13.6 ab | 118.0 ab |
T3 | 1.1 ab | 2.3 bc | 8.3 de | 38.5 cd |
T4 | 1.0 b | 2.1 c | 7.6 e | 34.6 cd |
T5 | 1.0 b | 2.1 c | 12.8 abc | 51.6 cd |
T6 | 1.5 a | 3.3 abc | 13.5 ab | 95.8 bc |
T7 | 1.1 ab | 2.1 c | 11.1 abcde | 67.1 bcd |
T8 | 1.1 ab | 2.5 bc | 12.0 abcd | 52.9 cd |
T9 | 1.0 b | 2.1 c | 9.1 de | 53.6 cd |
T10 | 1.0 b | 1.6 c | 9.6 bcde | 46.6 cd |
T11 | 1.0 b | 1.8 c | 13.0 abc | 58.3 cd |
T12 | 1.1 ab | 2.3 c | 12.1 abc | 51.6 cd |
T13 | 1.0 b | 3.1 abc | 9.0 cde | 47.6 e |
T14 | 1.5 a | 4.6 a | 16.3 a | 178.0 a |
T15 | 1.1 ab | 2.8 bc | 12.0 abcd | 52.3 bcd |
T16 | 1.0 b | 1.50 c | 7.17 e | 26.17 d |
SEM | 0.21 | 0.88 | 2.15 | 1.77 |
SED | 0.15 | 0.62 | 1.52 | 2.46 |
HSD | 0.43 | 1.78 | 4.34 | 4.02 |
T | FSW | FRW | FRSR | |||
---|---|---|---|---|---|---|
90 DAS | 365 DAS | 90 DAS | 365 DAS | 90 DAS | 365 DAS | |
T1 | 4.3 bcd | 43.3 bc | 2.7 bcd | 27.5 ab | 0.6 a | 0.6 bcde |
T2 | 5.1 abc | 92.2 ab | 3.3 abc | 29.3 ab | 0.6 acd | 0.3 cde |
T3 | 5.1 abc | 40.0 bc | 2.6 cd | 21.9 bc | 0.5 bcd | 0.5 bcde |
T4 | 3.7 cd | 27.9 c | 2.5 cd | 17.3 bc | 0.6 abcd | 0.6 bcde |
T5 | 6.2 a | 30.9 c | 2.7 bcd | 18.6 bc | 0.4 bcd | 0.6 cde |
T6 | 5.4 ab | 32.7 c | 3.7 ab | 27.6 ab | 0.6 abcd | 0.8 de |
T7 | 4.1 bcd | 30.7 c | 2.9 bcd | 15.9 c | 0.7 abcd | 0.5 bcde |
T8 | 4.4 bcd | 36.9 c | 3.1 abcd | 22.1 bc | 0.7 abcd | 0.6 cde |
T9 | 4.1 bcd | 29.2 c | 2.6 cd | 18.5 bc | 0.6 abcd | 0.6 bcd |
T10 | 3.8 cd | 21.6 c | 2.3 cd | 14.5 c | 0.5 cd | 0.6 bcd |
T11 | 4.2 bcd | 29.5 c | 2.8 bcd | 15.9 c | 0.6 abcd | 0.5 bcde |
T12 | 5.1 abc | 31.6 c | 3.0 abcd | 21.7 bc | 0.6 ab | 0.6 bc |
T13 | 3.7 cd | 37.8 bc | 2.5 cd | 21.3 bc | 0.6 abcd | 0.5 bcde |
T14 | 6.1 a | 113.3 a | 4.0 a | 34.3 a | 0.6 abcd | 0.3 cde |
T15 | 4.9 abc | 38.9 bc | 2.8 bcd | 27.8 ab | 0.5 cd | 0.7 ab |
T16 | 3.4 d | 17.2 c | 2.1 d | 13.4 c | 0.6 abc | 0.7 a |
SEM | 0.75 | 14.58 | 0.50 | 5.25 | 0.07 | 0.15 |
SED | 0.53 | 10.31 | 0.23 | 3.71 | 0.25 | 0.10 |
HSD | 1.52 | 29.38 | 0.66 | 10.58 | 1.37 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manohar Kandileri, A.; Shukla, G.; Louis, L.T.; Kizha, A.R.; Husen, A.; Chakravarty, S. Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde). Seeds 2024, 3, 88-102. https://doi.org/10.3390/seeds3010007
Manohar Kandileri A, Shukla G, Louis LT, Kizha AR, Husen A, Chakravarty S. Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde). Seeds. 2024; 3(1):88-102. https://doi.org/10.3390/seeds3010007
Chicago/Turabian StyleManohar Kandileri, Abha, Gopal Shukla, Libin T. Louis, Anil Raj Kizha, Azamal Husen, and Sumit Chakravarty. 2024. "Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde)" Seeds 3, no. 1: 88-102. https://doi.org/10.3390/seeds3010007
APA StyleManohar Kandileri, A., Shukla, G., Louis, L. T., Kizha, A. R., Husen, A., & Chakravarty, S. (2024). Influence of Hydro, Mechanical, and Chemical Treatments to Seed for Germination and Seedling Growth of Saraca asoca (Roxb. De Wilde). Seeds, 3(1), 88-102. https://doi.org/10.3390/seeds3010007