An Adaptive Downsampling FPGA-Based TDC Implementation for Time Measurement Improvement
Abstract
:1. Introduction
2. FPGA-TDC Methodology
2.1. Tapped Delay-Line Architecture
2.1.1. TDL Cell
2.1.2. Ones-Counter
2.2. Placement of the TDL
2.3. Adaptive Downsampling Method
3. Results
3.1. Linearity Improvement
3.2. Effects of Nonidealities
3.3. Total Estimated Nonlinearity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgakopoulou, K.; Spathis, C.; Bourlis, G.; Tsirigotis, A.G.; Leisos, A.; Birbas, M.; Birbas, A.; Tzamarias, S.E. A 100 ps multi-time over threshold data acquisition system for cosmic ray detection. Meas. Sci. Technol. 2018, 29, 115001. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, J. Picosecond Stopwatches: The Evolution of Time-to-Digital Converters. IEEE Solid-State Circuits Mag. 2012, 4, 55–59. [Google Scholar] [CrossRef]
- Moser, N.; Rodriguez-Manzano, J.; Lande, T.S.; Georgiou, P. A Scalable ISFET Sensing and Memory Array With Sensor Auto-Calibration for On-Chip Real-Time DNA Detection. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 390–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.; Chen, M.S. A Fractional-N DPLL with Calibration-Free Multi-Phase Injection-Locked TDC and Adaptive Single-Tone Spur Cancellation Scheme. IEEE Trans. Circuits Syst. I Regul. Pap. 2016, 63, 1111–1122. [Google Scholar] [CrossRef]
- Hussein, A.I.; Vasadi, S.; Paramesh, J. A 450 fs 65-nm CMOS Millimeter-Wave Time-to-Digital Converter Using Statistical Element Selection for All-Digital PLLs. IEEE J. Solid-State Circuits 2018, 53, 357–374. [Google Scholar] [CrossRef]
- Fishburn, M.; Menninga, L.H.; Favi, C.; Charbon, E. A 19.6 ps, FPGA-Based TDC with Multiple Channels for Open Source Applications. IEEE Trans. Nucl. Sci. 2013, 60, 2203–2208. [Google Scholar] [CrossRef]
- Venialgo, E.; Lusardi, N.; Garzetti, F.; Geraci, A.; Brunner, S.E.; Schaart, D.R.; Charbon, E. Toward a Full-Flexible and Fast-Prototyping TOF-PET Block Detector Based on TDC-on-FPGA. IEEE Trans. Radiat. Plasma Med. Sci. 2019, 3, 538–548. [Google Scholar] [CrossRef] [Green Version]
- Yoshioka, K.; Kubota, H.; Fukushima, T.; Kondo, S.; Ta, T.T.; Okuni, H.; Watanabe, K.; Hirono, M.; Ojima, Y.; Kimura, K.; et al. A 20-ch TDC/ADC Hybrid Architecture LiDAR SoC for 240 × 96 Pixel 200-m Range Imaging with Smart Accumulation Technique and Residue Quantizing SAR ADC. IEEE J. Solid-State Circuits 2018, 53, 3026–3038. [Google Scholar] [CrossRef]
- Jansson, J.; Koskinen, V.; Mantyniemi, A.; Kostamovaara, J. A Multichannel High-Precision CMOS Time-to-Digital Converter for Laser-Scanner-Based Perception Systems. IEEE Trans. Instrum. Meas. 2012, 61, 2581–2590. [Google Scholar] [CrossRef]
- Tyndall, D.; Rae, B.R.; Li, D.D.; Arlt, J.; Johnston, A.; Richardson, J.A.; Henderson, R.K. A High-Throughput Time-Resolved Mini-Silicon Photomultiplier With Embedded Fluorescence Lifetime Estimation in 0.13 μm CMOS. IEEE Trans. Biomed. Circuits Syst. 2012, 6, 562–570. [Google Scholar] [CrossRef]
- Palojarvi, P.; Maatta, K.; Kostamovaara, J. Integrated time-of-flight laser radar. IEEE Trans. Instrum. Meas. 1997, 46, 996–999. [Google Scholar] [CrossRef]
- Fan, H.H.; Cao, P.; Liu, S.B.; An, Q. TOT measurement implemented in FPGA TDC. Chin. Phys. C 2015, 39, 116101. [Google Scholar] [CrossRef]
- Henzler, S. Time-to-Digital Converters; Springer: Dordrecht, The Netherlands, 2010; Volume 1. [Google Scholar] [CrossRef]
- Kong, J.; Henzler, S.; Schmitt-Landsiedel, D.; Siek, L. A 9-bit, 1.08 ps resolution two-step time-to-digital converter in 65 nm CMOS for time-mode ADC. In Proceedings of the 2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Jeju, Korea, 25–28 October 2016; pp. 348–351. [Google Scholar] [CrossRef]
- Roberts, G.W.; Ali-Bakhshian, M. A Brief Introduction to Time-to-Digital and Digital-to-Time Converters. IEEE Trans. Circuits Syst. II Express Briefs 2010, 57, 153–157. [Google Scholar] [CrossRef]
- Lee, M.; Abidi, A.A. A 9 b, 1.25 ps Resolution Coarse–Fine Time-to-Digital Converter in 90 nm CMOS that Amplifies a Time Residue. IEEE J. Solid-State Circuits 2008, 43, 769–777. [Google Scholar] [CrossRef]
- Keranen, P.; Maatta, K.; Kostamovaara, J. Wide-Range Time-to-Digital Converter with 1-ps Single-Shot Precision. IEEE Trans. Instrum. Meas. 2011, 60, 3162–3172. [Google Scholar] [CrossRef]
- Tontini, A.; Gasparini, L.; Pancheri, L.; Passerone, R. Design and Characterization of a Low-Cost FPGA-Based TDC. IEEE Trans. Nucl. Sci. 2018, 65, 680–690. [Google Scholar] [CrossRef]
- Cui, K.; Ren, Z.; Li, X.; Liu, Z.; Zhu, R. A High-Linearity, Ring-Oscillator-Based, Vernier Time-to-Digital Converter Utilizing Carry Chains in FPGAs. IEEE Trans. Nucl. Sci. 2017, 64, 697–704. [Google Scholar] [CrossRef]
- Won, J.Y.; Lee, J.S. Time-to-Digital Converter Using a Tuned-Delay Line Evaluated in 28-, 40-, and 45-nm FPGAs. IEEE Trans. Instrum. Meas. 2016, 65, 1678–1689. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y. A 128-Channel, 710 M Samples/Second, and Less Than 10 ps RMS Resolution Time-to-Digital Converter Implemented in a Kintex-7 FPGA. IEEE Trans. Nucl. Sci. 2015, 62, 773–783. [Google Scholar] [CrossRef]
- Bourdeauducq, S. A 26 ps RMS Time-to-Digital Converter Core for Spartan-6 FPGAs. 2013. Available online: https://arxiv.org/abs/1303.6840 (accessed on 25 October 2022).
- Wang, Y.; Zhou, X.; Song, Z.; Kuang, J.; Cao, Q. A 3.0-ps rms Precision 277-MSamples/s Throughput Time-to-Digital Converter Using Multi-Edge Encoding Scheme in a Kintex-7 FPGA. IEEE Trans. Nucl. Sci. 2019, 66, 2275–2281. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Cheng, X.; Li, D. Spartan-6 FPGA based 8-channel time-to-digital converters for TOF-PET systems. In Proceedings of the 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA, USA, 3–5 November 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Ugur, C.; Bayer, E.; Kurz, N.; Traxler, M. A 16 channel high resolution (11 ps RMS) Time-to-Digital Converter in a Field Programmable Gate Array. J. Instrum. 2012, 7, C02004. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, C. A Nonlinearity Minimization-Oriented Resource-Saving Time-to-Digital Converter Implemented in a 28 nm Xilinx FPGA. IEEE Trans. Nucl. Sci. 2015, 62, 2003–2009. [Google Scholar] [CrossRef]
- Parsakordasiabi, M.; Vornicu, I.; Rodríguez-Vázquez, Á.; Carmona-Galán, R. A Low-Resources TDC for Multi-Channel Direct ToF Readout Based on a 28-nm FPGA. Sensors 2021, 21, 308. [Google Scholar] [CrossRef] [PubMed]
- Mantyniemi, A.; Rahkonen, T.; Kostamovaara, J. A CMOS Time-to-Digital Converter (TDC) Based On a Cyclic Time Domain Successive Approximation Interpolation Method. IEEE J. Solid-State Circuits 2009, 44, 3067–3078. [Google Scholar] [CrossRef]
- Ozawa, Y.; Ida, T.; Jiang, R.; Sakurai, S.; Takigami, S.; Tsukiji, N.; Shiota, R.; Kobayashi, H. SAR TDC Architecture with Self-Calibration Employing Trigger Circuit. In Proceedings of the 2017 IEEE 26th Asian Test Symposium (ATS), Taipei City, Taiwan, 27–30 November 2017; pp. 94–99. [Google Scholar] [CrossRef]
- Chen, H.; Li, D.D. Multichannel, Low Nonlinearity Time-to-Digital Converters Based on 20 and 28 nm FPGAs. IEEE Trans. Ind. Electron. 2019, 66, 3265–3274. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.; Cabral, J.; Alves, F.S. Recent Developments and Challenges in FPGA-Based Time-to-Digital Converters. IEEE Trans. Instrum. Meas. 2019, 68, 4205–4221. [Google Scholar] [CrossRef]
- Cui, K.; Li, X.; Liu, Z.; Zhu, R. Toward Implementing Multichannels, Ring-Oscillator-Based, Vernier Time-to-Digital Converter in FPGAs: Key Design Points and Construction Method. IEEE Trans. Radiat. Plasma Med Sci. 2017, 1, 391–399. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhou, D. An 8.5-ps Two-Stage Vernier Delay-Line Loop Shrinking Time-to-Digital Converter in 130-nm Flash FPGA. IEEE Trans. Instrum. Meas. 2018, 67, 406–414. [Google Scholar] [CrossRef]
- Xilinx Inc. Virtex-6 Libraries Guide for HDL Designs, UG623. 2012. Available online: https://www.xilinx.com/support/documentation/sw_manuals/xilinx14_7/virtex6_hdl.pdf (accessed on 25 October 2022).
- Wang, Y.; Kuang, J.; Liu, C.; Cao, Q. A 3.9-ps RMS Precision Time-to-Digital Converter Using Ones-Counter Encoding Scheme in a Kintex-7 FPGA. IEEE Trans. Nucl. Sci. 2017, 64, 2713–2718. [Google Scholar] [CrossRef]
- Garner, H.L. The Residue Number System. IRE Trans. Electron. Comput. 1959, EC-8, 140–147. [Google Scholar] [CrossRef]
- Sousa, L. Nonconventional Computer Arithmetic Circuits, Systems and Applications. IEEE Circuits Syst. Mag. 2021, 21, 6–40. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, K.; Chai, Z.; Wang, H.; Ding, Z.; Bao, W. High-Resolution Time-to-Digital Converters Implemented on 40-, 28-, and 20-nm FPGAs. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Xilinx Inc. Virtex-6 FPGA Clocking Resources. 2014. Available online: https://docs.xilinx.com/v/u/en-US/ug362 (accessed on 25 October 2022).
- Xilinx Inc. 7 Series FPGAs Configurable Logic Block. 2016. Available online: https://docs.xilinx.com/v/u/LHd6SGNNCEUgQ~fLalm5Hg (accessed on 25 October 2022).
- Xilinx Inc. UltraScale Architecture Configurable Logic Block. 2017. Available online: https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb (accessed on 25 October 2022).
- Wu, Y.; Lu, P.; Staszewski, R.B. A Time-Domain 147fsrms 2.5-MHz Bandwidth Two-Step Flash-MASH 1-1-1 Time-to-Digital Converter With Third-Order Noise-Shaping and Mismatch Correction. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 2532–2545. [Google Scholar] [CrossRef]
Pat. | CCCC | CCCN | CCNC | CNCC | NCCC | CCNN |
DNL | 0.63 | 0.35 | 0.91 | 0.66 | 0.30 | 0.53 |
INL | 1.70 | 0.50 | 1.49 | 1.08 | 1.06 | 0.87 |
Pat. | CNCN | NCCN | CNNC | NCNC | NNCC | NNNC |
DNL | 0.12 | 0.46 | 0.95 | 0.49 | 0.19 | 0.19 |
INL | 0.52 | 0.62 | 0.86 | 0.83 | 0.51 | 0.47 |
Pat. | SSSS | SSSN | SSNS | SNSS | NSSS | SSNN |
DNL | 0.33 | 0.43 | 0.59 | 0.43 | 0.27 | 0.65 |
INL | 2.98 | 1.22 | 2.07 | 2.24 | 1.92 | 0.72 |
Pat. | SNSN | NSSN | SNNS | NSNS | NNSS | NNSN |
DNL | 0.19 | 0.39 | 0.58 | 0.26 | 0.51 | 0.19 |
INL | 0.90 | 0.56 | 1.36 | 0.98 | 1.13 | 0.47 |
Pat. | CSCC | SCCC | CSCN | SCCN | NSCN | SCNN |
DNL | 0.87 | 0.42 | 0.63 | 0.25 | 0.12 | 0.27 |
INL | 1.82 | 1.88 | 0.52 | 0.91 | 0.53 | 0.63 |
Pattern | Range | Range | ||
---|---|---|---|---|
CCCC | 0.78 | 0.86 | [4,−3] | [3,−3] |
CCCN | 0.69 | 0.85 | [3,−3] | [3,−2] |
CNCN | 0.45 | 0.52 | [2,−2] | [2,0] |
NNNC | 0.21 | 0.24 | [1,−1] | [0,−1] |
SSSS | 0.74 | 0.83 | [3,−3] | [3,−1] |
SSSN | 0.45 | 0.60 | [3,−3] | [0,−2] |
SNSN | 0.39 | 0.45 | [2,−1] | [1,−1] |
NNSN | 0.18 | 0.21 | [1,e1] | [0,−1] |
SCCC | 0.55 | 0.59 | [3,−4] | [3,−1] |
CSCN | 0.61 | 0.65 | [2,−3] | [2,−2] |
NSCN | 0.30 | 0.40 | [2,−2] | [0,−2] |
Pat. | CCCC | CCCN | CNCN | NNNC | SSSS | SSSN |
0.77 | 0.62 | 0.30 | 0.50 | 0.67 | 0.53 | |
1.57 | 0.65 | 0.45 | 0.69 | 2.94 | 1.39 | |
2.07 | 1.81 | 0.90 | 1.01 | 2.18 | 1.22 | |
4.03 | 1.76 | 1.12 | 1.28 | 6.10 | 3.27 | |
Pat. | SNSN | NNSN | SCCC | CSCN | NSCN | |
0.37 | 0.38 | 0.55 | 0.70 | 0.49 | ||
1.06 | 0.77 | 1.99 | 0.59 | 0.46 | ||
1.40 | 1.23 | 1.75 | 1.89 | 1.03 | ||
2.49 | 1.38 | 3.96 | 1.97 | 1.10 |
TDC | DNL | INL | FFs | LUTs | ||
---|---|---|---|---|---|---|
CCCC | 10 | 7.8 | 0.77 | 1.57 | 955 | 892 |
CCCN | 13.33 | 9.2 | 0.62 | 0.65 | 722 | 746 |
CNCN | 20 | 9.0 | 0.30 | 0.45 | 475 | 601 |
NNNC | 40 | 8.4 | 0.50 | 0.69 | 235 | 459 |
SSSS | 10 | 7.4 | 0.67 | 2.94 | 955 | 937 |
SSSN | 13.33 | 6.0 | 0.53 | 1.39 | 722 | 763 |
SNSN | 20 | 7.8 | 0.37 | 1.06 | 475 | 613 |
NNSN | 40 | 7.2 | 0.38 | 0.77 | 235 | 460 |
SCCC | 10 | 5.5 | 0.55 | 1.99 | 955 | 880 |
CSCN | 13.33 | 8.13 | 0.70 | 0.59 | 713 | 817 |
NSCN | 20 | 6.0 | 0.49 | 0.46 | 475 | 610 |
[20] | 10.1 | 9.82 | 0.52 | 1.08 | 1,641 | 577 |
[26] | 17.6 | 15 | [−1 0.8] | [−0.8 0.8] | NS | NS |
[30] | 10.54 | 3.39 | 0.29 | 0.63 | NS | NS |
[30] | 10.54 | 3.04 | 0.01 | 0.04 | 1,916 | 1,145 |
[18] | 25.57 | [0.69 1.46] | [−0.9 1.23] | [−0.44 2.96] | 415 | NS |
[33] | 8.5 | 0.36 | 0.91 | NS | NS | |
[21] | 8.7 | NS | [0 4.6] * | NS | NS | NS |
[25] | 10 | 10.3 | [−0.96 2.74] | NS | NS | 20,000 † |
[27] | 22.2 | 26.04 | 1.18 | 2.75 | 638 | 216 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikopoulos, E.; Birbas, M.; Birbas, A. An Adaptive Downsampling FPGA-Based TDC Implementation for Time Measurement Improvement. Chips 2022, 1, 175-190. https://doi.org/10.3390/chips1030012
Dikopoulos E, Birbas M, Birbas A. An Adaptive Downsampling FPGA-Based TDC Implementation for Time Measurement Improvement. Chips. 2022; 1(3):175-190. https://doi.org/10.3390/chips1030012
Chicago/Turabian StyleDikopoulos, Evangelos, Michael Birbas, and Alexios Birbas. 2022. "An Adaptive Downsampling FPGA-Based TDC Implementation for Time Measurement Improvement" Chips 1, no. 3: 175-190. https://doi.org/10.3390/chips1030012
APA StyleDikopoulos, E., Birbas, M., & Birbas, A. (2022). An Adaptive Downsampling FPGA-Based TDC Implementation for Time Measurement Improvement. Chips, 1(3), 175-190. https://doi.org/10.3390/chips1030012