Special Issue “Smart IC Design and Sensing Technologies”
Abstract
:Introduction
Conflicts of Interest
References
- Gautschi, M.; Schiavone, P.D.; Traber, A.; Loi, I.; Pullini, A.; Rossi, D.; Flamand, E.; Gurkaynak, F.K.; Benini, L. Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices. IEEE Trans. Very Large Scale Integr. Syst. 2017, 25, 2700–2713. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Seok, M. A fully integrated digital low-dropout regulator based on event-driven explicit time-coding architecture. IEEE J. Solid State Circuits 2017, 52, 3071–3080. [Google Scholar] [CrossRef]
- Tziouvaras, A.; Dimitriou, G.; Dossis, M.; Stamoulis, G. Instruction-flow-based timing analysis in pipelined processors. Panhellenic Conf. Electron. Telecommun. 2019, 1–6. [Google Scholar] [CrossRef]
- Athanasios, T.; Georgios, D.; Georgios, S. Low-power near-data instruction execution leveraging opcode-based timing analysis. ACM Trans. Arch. Code Optim. 2022, 19, 19–45. [Google Scholar] [CrossRef]
- Papalekas, D.; Tziouvaras, A.; Floros, G.; Dimitriou, G.; Dossis, M.; Stamoulis, G. Near data processing performance improvement prediction via metric-based workload classification. In Proceedings of the 11th International Conference on Modern Circuits and Systems Technologies (MOCAST), Bremen, Germany, 8–10 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Y.; He, H. A Processing-in-memory architecture programming paradigm for wireless internet-of-things applications. Sensors 2019, 19, 140. [Google Scholar] [CrossRef] [Green Version]
- Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter traffic prediction using big data, in-memory computing, deep learning and GPUs. Sensors 2019, 19, 2206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, Z.; Verma, N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array. IEEE J. Solid State Circuits 2017, 52, 915–924. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, Y.; Tong, X.; Luo, Q.; Chen, X. Dynamically reconfigurable encryption and decryption system design for the internet of things information security. Sensors 2019, 19, 143. [Google Scholar] [CrossRef] [Green Version]
- Louliej, A.; Jabrane, Y.; Gil Jiménez, V.P.; Armada, A.G. Practical guidelines for approaching the implementation of neural networks on FPGA for PAPR reduction in vehicular networks. Sensors 2018, 19, 116. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-González, A.; Arias-Estrada, M.; Berry, F. Depth from a motion algorithm and a hardware architecture for smart cameras. Sensors 2018, 19, 53. [Google Scholar] [CrossRef] [Green Version]
- Chaurasiya, R.B.; Shrestha, R. Hardware-efficient and fast sensing-time maximum-minimum-eigenvalue-based spectrum sensor for cognitive radio network. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4448–4461. [Google Scholar] [CrossRef]
- Tudose, M.-L.; Anghel, A.; Cacoveanu, R.; Datcu, M. Pulse radar with field-programmable gate array range compression for real time displacement and vibration monitoring. Sensors 2018, 19, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowers, J.; Ovtcharov, K.; Papamichael, M.; Massengill, T.; Liu, M.; Lo, D.; Alkalay, S.; Haselman, M.; Adams, L.; Ghandi, M.; et al. A Configurable cloud-scale DNN processor for real-time AI. In Proceedings of the ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA), Los Angeles, CA, USA, 1–6 June 2018; pp. 1–14. [Google Scholar] [CrossRef]
- Vieira, J.; Malkowsky, S.; Nieman, K.; Miers, Z.; Kundargi, N.; Liu, L.; Wong, I.; Owall, V.; Edfors, O.; Tufvesson, F. A flexible 100-antenna testbed for massive MIMO. IEEE Globecom Workshops 2014, 287–293. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Parhi, K.K. High-speed VLSI implementation of 2-D discrete wavelet transform. IEEE Trans. Signal Process. 2008, 56, 393–403. [Google Scholar] [CrossRef]
- Shim, B.; Shanbhag, N. Energy-efficient soft error-tolerant digital signal processing. IEEE Trans. Very Large Scale Integr. Syst. 2006, 14, 336–348. [Google Scholar] [CrossRef]
- Bauer, F.C.; Muir, D.R.; Indiveri, G. Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic processor. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1575–1582. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-S.; Hou, K.-N.; Beh, W.-K.; Wu, A.-Y. Low-complexity compressed-sensing-based watermark cryptosystem and circuits implementation for wireless sensor networks. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 2485–2497. [Google Scholar] [CrossRef]
- Cardarilli, G.C.; Di Nunzio, L.; Fazzolari, R.; Nannarelli, A.; Petricca, M.; Re, M. Design space exploration based methodology for residue number system digital filters implementation. IEEE Trans. Emerg. Top. Comput. 2020, 10, 186–198. [Google Scholar] [CrossRef]
- Tragoudaras, A.; Stoikos, P.; Fanaras, K.; Tziouvaras, A.; Floros, G.; Dimitriou, G.; Kolomvatsos, K.; Stamoulis, G. Design space exploration of a sparse mobilenetv2 using high-level synthesis and sparse matrix techniques on FPGAs. Sensors 2022, 22, 4318. [Google Scholar] [CrossRef]
- Budak, A.F. CAD for analog/mixed-signal integrated circuits. Adv. Semicond. Technol. Sel. Top. Beyond Conv. CMOS 2022, 43–60. [Google Scholar]
- Gubbi, K.I.; Beheshti-Shirazi, S.A.; Sheaves, T.; Salehi, S.; Pd, S.M.; Rafatirad, S.; Sasan, A.; Homayoun, H. Survey of machine learning for electronic design automation. In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ′22). Association for Computing Machinery, New York, NY, USA, 6–8 June 2022; pp. 513–518. [Google Scholar] [CrossRef]
- Kahng, A.B. Machine learning for CAD/EDA: The road ahead. IEEE Des. Test 2022. [Google Scholar] [CrossRef]
- Lourenco, N.; Rosa, J.; Martins, R.; Aidos, H.; Canelas, A.; Povoa, R.; Horta, N. On the exploration of promising analog IC designs via artificial neural networks. In Proceedings of the 15th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Prague, Czech Republic, 2–5 July 2018; pp. 133–136. [Google Scholar] [CrossRef]
- Ma, H.; He, J.; Liu, Y.; Liu, L.; Zhao, Y.; Jin, Y. Security-driven placement and routing tools for electromagnetic side-channel protection. IEEE Trans. Comput. Des. Integr. Circuits Syst. 2020, 40, 1077–1089. [Google Scholar] [CrossRef]
- Axelou, O.; Floros, G.; Evmorfopoulos, N.; Stamoulis, G. Accelerating electromigration stress analysis using low-rank balanced truncation. In Proceedings of the 18th International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design (SMACD), Sardinia, Italy, 12–15 June 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Floros, G.; Evmorfopoulos, N.; Stamoulis, G. Efficient IC hotspot thermal analysis via low-rank model order reduction. Integration 2019, 66, 1–8. [Google Scholar] [CrossRef]
- Mishra, R.B.; Kumar, S.S.; Mukhiya, R. Design and simulation of capacitive pressure sensor for blood pressure sensing application. In Recent Trends in Communication, Computing, and Electronics. Lecture Notes in Electrical Engineering; Khare, A., Tiwary, U., Sethi, I., Singh, N., Eds.; Springer: Singapore, 2018; Volume 524, pp. 441–449. [Google Scholar] [CrossRef]
- Pal, P.; Pratap, Y.; Gupta, M.; Kabra, S. Modeling and simulation of AlGaN/GaN MOS-HEMT for biosensor applications. IEEE Sens. J. 2018, 19, 587–593. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floros, G.; Tziouvaras, A. Special Issue “Smart IC Design and Sensing Technologies”. Chips 2022, 1, 172-174. https://doi.org/10.3390/chips1030011
Floros G, Tziouvaras A. Special Issue “Smart IC Design and Sensing Technologies”. Chips. 2022; 1(3):172-174. https://doi.org/10.3390/chips1030011
Chicago/Turabian StyleFloros, George, and Athanasios Tziouvaras. 2022. "Special Issue “Smart IC Design and Sensing Technologies”" Chips 1, no. 3: 172-174. https://doi.org/10.3390/chips1030011
APA StyleFloros, G., & Tziouvaras, A. (2022). Special Issue “Smart IC Design and Sensing Technologies”. Chips, 1(3), 172-174. https://doi.org/10.3390/chips1030011