Next Issue
Volume 48, COGS 2022
Previous Issue
Volume 46, ECM 2025
 
 
blsf-logo

Journal Browser

Journal Browser

Biol. Life Sci. Forum, 2025, IECHo 2025

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Number of Papers: 2
Order results
Result details
Select all
Export citation of selected articles as:

Other

9 pages, 1253 KiB  
Proceeding Paper
Effect of Far-UVC and Violet Irradiation on the Microbial Contamination of Spinach Leaves and Their Vitamin C and Chlorophyll Contents
by Alexander Gerdt, Anna-Maria Gierke, Petra Vatter and Martin Hessling
Biol. Life Sci. Forum 2025, 47(1), 1; https://doi.org/10.3390/blsf2025047001 - 16 Jul 2025
Viewed by 277
Abstract
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength [...] Read more.
Microbial contamination of food can lead to faster spoilage and infections. Therefore, disinfection processes are required that have a low detrimental effect on the nutritional content. Concerning radiation disinfection, two spectral ranges have recently become important. The Far-UVC spectral range, with a wavelength below 230 nm and visible violet light. In this study, leaf spinach was used to investigate the extent to which these radiations inactivate Escherichia coli, but also to determine if the vitamin C or chlorophyll content was reduced. Frozen spinach leaves (Spinacia oleracea) were contaminated with E. coli × pGLO and irradiated with either a 222 nm krypton chloride lamp or 405 nm LEDs. The achieved bacterial reduction was determined by plating the irradiated samples on agar plates and subsequent colony counting. The vitamin C concentration was determined by means of redox titration, and the concentrations of chlorophyll a and chlorophyll b were determined using spectrometry. Both irradiations exhibited a strong antimicrobial impact on E. coli. The average log reduction doses were about 19 mJ/cm2 (222 nm) and 87 J/cm2 (405 nm), respectively. The vitamin C concentration decreased by 30% (222 nm) or 20% (405 nm), and the chlorophyll concentrations decreased by about 25%. Both irradiation approaches are able to substantially reduce microorganisms on spinach leaves by two orders of magnitude, but this is associated with a reduction in the nutrient content. Full article
Show Figures

Figure 1

7 pages, 723 KiB  
Proceeding Paper
Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)
by Elshafia Ali Hamid Mohammed, Károly Pál and Azza Siddig Hussien Abbo
Biol. Life Sci. Forum 2025, 47(1), 2; https://doi.org/10.3390/blsf2025047002 - 24 Jul 2025
Viewed by 337
Abstract
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the [...] Read more.
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the growth of mould-causing organisms such as fungi and bacteria. It is known to have antibacterial properties. The objective of the current study was to evaluate the in vitro effect of OFA on the post-harvest pathogens of Mabroom fruits. Fresh, apparently healthy, and fully ripe Mabroom dates were obtained from the National Agriculture and Food Corporation (NAFCO). The chosen fruits were packed in sterile, well-ventilated plastic boxes and transported to the lab under controlled conditions. The fruits were distributed into five groups (G1 to G5). The groups G1, G2, and G3 received 1%, 2%, and 3.5% OFA, respectively, while G4 was left untreated and G5 was washed only with tap water as a positive control treatment. Each group contained 200 g of fresh and healthy semi-soft dates. The samples were then dried and incubated in a humidity chamber at 25 °C ± 2 for seven days. The signs and symptoms of decay were monitored and recorded. The presence of pathogens was confirmed via phenotypic and microscopic-based methods. The results showed a significant difference (p ≤ 0.05) among the groups. OFA at 3.5% had the strongest inhibitory action against post-harvest pathogens, followed by OFA2%. However, there were no differences (p ≤ 0.05) between OFA1% and the control groups. Aspergillus spp., Penicillium spp., Rhizopus spp., and Botrytis spp. were most abundant in the control group, followed by OFA2% and OFA1%, respectively. In conclusion, octanoic fatty acid at 3.5% may improve the quality of date fruits through its high antimicrobial activity, reduce the effect of post-harvest decay, minimize the loss of date fruits during storage, and improve the sustainability of date fruits. Further experiments are necessary to confirm the effectiveness of OFA as a green solution for sustainable date fruit production. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop