Agroforestry as a Climate-Smart Strategy: Examining the Factors Affecting Farmers’ Adoption †
Abstract
:1. Introduction
2. Methodologies
2.1. Study Area
2.2. Materials and Methods
3. Results
3.1. Demographic Profile of the Respondents in the Study Area
3.2. Major Agroforestry Practices and Tree–Crop Combinations
3.3. Investment Analysis of Different Agroforestry Combinations
3.4. Factors Affecting Farmer’s Adoption of Agroforestry as a Climate-Smart Strategy
3.5. Major Problem Faced by the Farmer for Adopting Agroforestry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devendra, C. Climate Change Threats and Effects: Challenges for Agriculture and Food Security; Academy of Sciences Malaysia: Kuala Lumpur, Malaysia, 2012. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Bolaños, T.G.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K.; et al. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed]
- Post, J.E.; Altman, W. Managing the Environmental Change Process: Barriers and Opportunities 1. In Managing Green Teams; Routledge: London, UK, 2017; pp. 84–101. [Google Scholar]
- Vinodhini, S.M.; Manibharathi, S.; Pavithra, G.; Sakthivel, S. Agroforestry: Integrating Trees into Agricultural Systems. In Recent Approaches in Agriculture; Elite Publishing House: Delhi, India, 2023; p. 246. [Google Scholar]
- Raj, A.; Jhariya, M.K.; Yadav, D.K.; Banerjee, A.; Meena, R.S. Agroforestry: A holistic approach for agricultural sustainability. In Sustainable Agriculture, Forest and Environmental Management; Springer: Berlin/Heidelberg, Germany, 2019; pp. 101–131. [Google Scholar]
- McCabe, C. Agroforestry and Smallholder Farmers: Climate Change Adaptation through Sustainable Land Use; Capstone Collection: Lutz, FL, USA, 2013. [Google Scholar]
- Rao, K.P.C.; Verchot, L.V.; Laarman, J. Adaptation to climate change through sustainable management and development of agroforestry systems. J. SAT Agric. Res. 2007, 4, 1–30. [Google Scholar]
- Magalhaes, C.A.S.; Pedreira, B.C.; Tonini, H.; Neto, A.L.F. Crop, livestock and forestry performance assessment under different production systems in the north of Mato Grosso, Brazil. Agrofor. Syst. 2019, 93, 2085–2096. [Google Scholar] [CrossRef]
- Shi, P.-L.; Duan, C.; Wang, L.; Wu, N.; Kotru, R.; Gurung, J. Integrated landscape approaches to building resilience and multifunctionality in the Kailash Sacred Landscape, China. J. Mt. Sci. 2021, 18, 3321–3335. [Google Scholar] [CrossRef]
- Zerihun, M.F. A socioeconomic Analysis of Factors that Affect the Adoption of Agroforestry Technologies in the Eastern Cape Province of South Africa. Ph.D. Thesis, Tshwane University of Technology, Pretoria, South Africa, 2014. [Google Scholar]
- Sanou, L.; Savadogo, P.; Ezebilo, E.E.; Thiombiano, A. Drivers of farmers’ decisions to adopt agroforestry: Evidence from the Sudanian savanna zone, Burkina Faso. Renew. Agric. Food Syst. 2019, 34, 116–133. [Google Scholar] [CrossRef]
- Nair, P.K.R. Climate change mitigation: A low-hanging fruit of agroforestry. In Agroforestry-The Future of Global Land Use; Springer: Berlin/Heidelberg, Germany, 2012; pp. 31–67. [Google Scholar]
- Garrity, D.P.; Festus, K.; Akinnifesi, O.C.; Ajayi, S.G.; Weldesemayat, J.G.; Mowo, A.K.; Larwanou, M.; Bayala, J. Evergreen Agriculture: A robust approach to sustainable food security in Africa. Food Secur. 2010, 2, 197–214. [Google Scholar] [CrossRef]
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Hanif, M.A.; Roy, R.M.; Bari, M.S.; Ray, P.C.; Rahman, M.S.; Hasan, M.F. Livelihood improvements through agroforestry: Evidence from Northern Bangladesh. Small-Scale For. 2018, 17, 505–522. [Google Scholar] [CrossRef]
- Hong, Y.; Heerink, N.; Jin, S.; Berentsen, P.; Zhang, L.; van der Werf, W. Intercropping and agroforestry in China–current state and trends. Agric. Ecosyst. Environ. 2017, 244, 52–61. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus farm mosaic systems–Comparing land-use efficiency, economic returns and risks under climate change effects. Sci. Total Environ. 2017, 587, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Sun, Z.; Zheng, J.; Du, G.; Feng, L.; Cai, Q.; Yang, N.; Feng, C.; Zhang, Z.; Evers, J.B.; et al. Mixing trees and crops increases land and water use efficiencies in a semi-arid area. Agric. Water Manag. 2016, 178, 281–290. [Google Scholar] [CrossRef]
- Talukder, M.S.; Miah, M.M.U.; Miah, M.G.; Haque, M.M.; Rahman, M.M.; Islam, M.M. Fruit tree-based agroforestry systems and their carbon sequestration potentials in different ecosystem of Bangladesh. J. Agrofor. Environ. 2019, 13, 43–48. [Google Scholar]
- Jahan, H.; Rahman, M.W.; Islam, M.S.; Rezwan-Al-Ramim, A.; Tuhin, M.M.-U.-J.; Hossain, M.E. Adoption of agroforestry practices in Bangladesh as a climate change mitigation option: Investment, drivers, and SWOT analysis perspectives. Environ. Chall. 2022, 7, 100509. [Google Scholar] [CrossRef]
Variables | Mean | St. Err. | Min | Max |
---|---|---|---|---|
Adoption of agroforestry as a climate-smart strategy | 0.582 | 0.64 | 0 | 1 |
Age of the respondent (years) | 42 | 2.74 | 19 | 67 |
Farm size (hectares) | 0.97 | 3.27 | 0.19 | 5.71 |
Family size (number) | 5 | 2.17 | 2 | 7 |
Education level (years of schooling) | 6.81 | 7.87 | 0 | 12 |
Marital status (binary variable) | 0.87 | 0.31 | 0 | 1 |
Training experience (binary variable) | 0.38 | 0.92 | 0 | 1 |
Number of extension visits (number of visits/month) | 0.48 | 1.94 | 0 | 6 |
Improved market access (binary variable) | 0.62 | 4.11 | 0 | 1 |
Income level (yearly, in BDT) | 118,735.87 | 85,901.27 | 50,000 | 375,000 |
Farming experience (number of years) | 12.91 | 5.48 | 3 | 60 |
Crop Land Agroforestry | Homestead/Orchard-Based Agroforestry | ||||
---|---|---|---|---|---|
Tree–Crop Combination | Practiced by Farmers (%) | Rank Order | Tree–Crop Combination | Practiced by Farmers (%) | Rank Order |
Eucalyptus + Maize | 57.14 | 2 | Mango + Potato | 73.33 | 1 |
Eucalyptus + Rice | 69.05 | 1 | Mango + Bean | 69.05 | 3 |
Eucalyptus + Wheat | 52.38 | 3 | Mango + Brinjal | 64.29 | 5 |
Eucalyptus + Mustard | 2.38 | 6 | Mango + Onion + Garlic | 52.38 | 7 |
Mahogany + Rice | 42.86 | 4 | Mango + Red Amaranth | 73.81 | 2 |
Mahogany + Wheat | 42.86 | 4 | Mango + Radish | 23.81 | 15 |
Mahogany + Maize | 42.86 | 4 | Mango + Pointed Gourd | 28.57 | 13 |
Mahogany + Napier | 2.38 | 6 | Mango + Tomato | 42.86 | 8 |
Akashmoni + Rice | 2.38 | 6 | Mango + Cauliflower | 14.29 | 16 |
Mango + Rice | 42.86 | 4 | Litchi + Potato | 66.67 | 4 |
Mango + Wheat | 42.86 | 4 | Litchi + Malabar Spinach | 40.48 | 9 |
Litchi + Rice | 52.38 | 3 | Litchi + Onion | 35.72 | 11 |
Litchi + Mustard | 42.86 | 4 | Litchi + Red Amaranth | 57.14 | 6 |
Mango + Turmeric | 9.52 | 5 | Litchi + Sweet Gourd | 38.10 | 10 |
Akashmoni + Maize | 2.38 | 6 | Malta + Potato | 2.38 | 20 |
Guava + Cucumber | 7.14 | 19 | |||
Lemon + Corolla | 9.52 | 18 |
Tree | Monocrop | Agroforestry (Combined with Vegetables) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NPV 1 | IRR | Chili | Brinjal | Potato | |||||||
BCR | NPV 1 | IRR | BCR | NPV 1 | IRR | BCR | NPV 1 | IRR | |||
Litchi | 14.38 | 28 | 1.77 | 18.46 | 47.19 | 2.00 | 19.00 | 54.45 | 1.46 | 19.73 | 68 |
Mango | 18.36 | 45 | 1.91 | 21.18 | 72.6 | 2.22 | 22.40 | 83.49 | 1.63 | 23.00 | 88 |
Mahogany | 10.95 | 25 | 1.46 | 15.50 | 50.82 | 1.41 | 13.46 | 33.88 | 1.21 | 16.38 | 57 |
Eucalyptus | 14.38 | 28 | 1.69 | 17.78 | 43.56 | 1.96 | 18.54 | 48.4 | 1.46 | 19.73 | 68 |
Akashmoni | 7.45 | 22 | 1.17 | 12.22 | 47.19 | 1.35 | 12.79 | 52.03 | 1.37 | 13.08 | 55 |
Variables | Coefficient | St. Err. | t-Value | Sig |
---|---|---|---|---|
Farm size | 0.022 | 0.005 | 4.13 | *** |
Age of the respondent | 3.121 | 0.389 | 8.03 | *** |
Education level | 1.583 | 0.71 | 2.23 | ** |
Training experience | 0.004 | 0.002 | 2.15 | ** |
Number of extension visits | 0.771 | 0.167 | 4.63 | *** |
Improved market access | 0.401 | 0.208 | 1.93 | * |
Household size | −0.236 | 0.506 | −0.47 | |
Income level | 0.103 | 0.068 | 1.51 | |
Distance from the nearest market | −0.018 | 0.014 | −1.22 | |
Constant | −2.489 | 0.902 | −2.76 | *** |
Mean of dependent variables | 0.517 | SD of dependent variables | 0.501 | |
Pseudo r-squared | 0.395 | Number of observations | 294 | |
Chi-square | 160.944 | Prob > chi2 | 0.000 | |
Akaike criterion (AIC) | 266.286 | Bayesian criterion (BIC) | 303.122 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.M.; Pal, A.C.; Bari, M.S.; Rahman, M.L.; Sarmin, I.J. Agroforestry as a Climate-Smart Strategy: Examining the Factors Affecting Farmers’ Adoption. Biol. Life Sci. Forum 2024, 30, 29. https://doi.org/10.3390/IOCAG2023-17340
Ali MM, Pal AC, Bari MS, Rahman ML, Sarmin IJ. Agroforestry as a Climate-Smart Strategy: Examining the Factors Affecting Farmers’ Adoption. Biology and Life Sciences Forum. 2024; 30(1):29. https://doi.org/10.3390/IOCAG2023-17340
Chicago/Turabian StyleAli, Md. Manik, Abinash Chandra Pal, Md. Shafiqul Bari, Md. Lutfor Rahman, and Israt Jahan Sarmin. 2024. "Agroforestry as a Climate-Smart Strategy: Examining the Factors Affecting Farmers’ Adoption" Biology and Life Sciences Forum 30, no. 1: 29. https://doi.org/10.3390/IOCAG2023-17340
APA StyleAli, M. M., Pal, A. C., Bari, M. S., Rahman, M. L., & Sarmin, I. J. (2024). Agroforestry as a Climate-Smart Strategy: Examining the Factors Affecting Farmers’ Adoption. Biology and Life Sciences Forum, 30(1), 29. https://doi.org/10.3390/IOCAG2023-17340