Effect of Different Carriers and Storage Temperatures on the Viability of Bacillus thuringiensis B9 and Bacillus pacificus B11 Isolated from Tomato (Solanum lycopersicum L.) Rhizosphere †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains
2.2. Preparation of Carriers
2.3. Determination of the Physical and Chemical Properties of Carriers
2.4. Preparation of Bioformulations
2.5. Assessment of Bioformulation Viability as a Function of Time
2.6. Statistical Analysis of the Data
3. Results
3.1. Physicochemical Characteristics of Carriers
3.2. Survival Rate of Strains after Drying
3.3. Viability of Deformations as a Function of Carriers and Storage Temperature
4. Discussion
4.1. Effect of the Type of Carrier on the Survival of Bacterial Inocula
4.2. Effect of Carrier Type on Bacterial Inocula Survival
4.3. Effect of Storage Temperature on Bacterial Inocula Survival
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, M.T.; Asghar, H.N.; Saleem, M.; Khan, M.Y.; Zahir, Z.A. Synergistic Effect of Rhizobia and Biochar on Growth and Physiology of Maize. Agron. J. 2015, 107, 2327–2334. [Google Scholar] [CrossRef]
- Di Benedetto, N.A.; Corbo, M.R.; Campaniello, D.; Pia Cataldi, M.; Bevilacqua, A.; Sinigaglia, M.; Flagella, Z. The Role of Plant Growth Promoting Bacteria in Improving Nitrogen Use Efficiency for Sustainable Crop Production: A Focus on Wheat. AIMS Microbiol. 2017, 3, 413–434. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Ali, Q.; Ashraf, S.; Kamran, M.; Rehman, A. Development of Future Bioformulations for Sustainable Agriculture. In Microbiome in Plant Health and Disease; Kumar, V., Prasad, R., Kumar, M., Choudhary, D.K., Eds.; Springer Singapore: Singapore, 2019; pp. 421–446. ISBN 9789811384943. [Google Scholar]
- Kouam, I.D.; Mabah, J.; Germain Ntsoli, P.; Tchamani, L.; Yaouba, A.; Katte, B.; Bitom, D. Growth Promotion Potential of Bacillus Spp. Isolates on Two Tomato (Solanum lycopersicum L.) Varieties in the West Region of Cameroon. Open Agric. 2023, 8, 20220154. [Google Scholar] [CrossRef]
- Pauwels, J.M.; Ranst, E.V.; Verloo, M.; Mvondo, A.Z. Pedology Laboratory Manual: Methods of Soil and Plant Analysis, Equipment, Management of Stocks of Glassware and Chemicals; AGCD: Brussels, Belgium, 1992. [Google Scholar]
- Mwangi, E.K. Effects of Selected Carrier Materials and Storage Temperatures on Survival, Viability and Efficacy of Rhizobia Biofertilizers. Mémoire de Master, Kenyatta University: Nairobi, Kenya, 2019.
- Kumar, A.; Usmani, Z.; Kumar, V. Anshumali Biochar and Flyash Inoculated with Plant Growth Promoting Rhizobacteria Act as Potential Biofertilizer for Luxuriant Growth and Yield of Tomato Plant. J. Environ. Manag. 2017, 190, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Tchakounté, G.V.T.; Berger, B.; Patz, S.; Fankem, H.; Ruppel, S. Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiol. Res. 2018, 214, 47–59. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Springer New York: New York, NY, USA, 1985; ISBN 978-1-4613-8377-2. [Google Scholar]
- Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. (Eds.) Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes; Springer Science & Business Media: New York, NY, USA, 2011; Volume 3. [Google Scholar]
- Ma, Y. Seed Coating with Beneficial Microorganisms for Precision Agriculture. Biotechnol. Adv. 2019, 37, 107423. [Google Scholar] [CrossRef] [PubMed]
- Sohaib, M.; Zahir, Z.A.; Khan, M.Y.; Ans, M.; Asghar, H.N.; Yasin, S.; Al-Barakah, F.N.I. Comparative Evaluation of Different Carrier-Based Multi-Strain Bacterial Formulations to Mitigate the Salt Stress in Wheat. Saudi J. Biol. Sci. 2020, 27, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Brahmaprakash, G.P. Formulations of Biofertilizers–Approaches and Advances. In Microbial Inoculants in Sustainable Agricultural Productivity; Singh, D.P., Singh, H.B., Prabha, R., Eds.; Springer: New Delhi, India, 2016; pp. 179–198. ISBN 978-81-322-2642-0. [Google Scholar]
- Paul, E.; Fages, J.; Blanc, P.; Goma, G.; Pareilleux, A. Survival of Alginate-Entrapped Cells of Azospirillum lipoferum during Dehydration and Storage in Relation to Water Properties. Appl. Microbiol. Biotechnol. 1993, 40, 34–39. [Google Scholar] [CrossRef]
- Phiromtan, M.; Mala, T.; Srinives, P. Effect of Various Carriers and Storage Temperatures on Survival of Azotobacter Vinelandii NDD-CK-1 in Powder Inoculant. MAS 2013, 7, 81–89. [Google Scholar] [CrossRef]
Characteristics | Biochar | Coffee Pulp | Soil |
---|---|---|---|
Physical characteristics | |||
WHC | 92.57 ± 8.31 | 184.32 ± 14.71 | 63.13 ± 16.09 |
Moisture content after drying (%) | 15.20 ± 0.13 | 14.87 ± 0.91 | 15.41 ± 0.55 |
Particle size (%) | |||
<106 µm | 14.86 | 30.17 | 20.80 |
106–216 µm | 13.43 | 24.28 | 15.47 |
216–500 µm | 40.76 | 31.49 | 40.43 |
500 µm–1 mm | 30.95 | 10.80 | 23.30 |
˃1 mm | 0 | 3.26 | 0 |
Chemical characteristics | |||
Ph | 8.1 ± 0.0 | 6 ± 0.0 | 5.6 ± 0.0 |
N (%) | 0.21 | 1.68 | 0.01659 |
P | 159.03 mg/kg | 0.05 (%) | 35.65 mg/kg |
K | 1.76 meq/100 g | 1.15 (%) | 4.25 mg/kg |
OM (%) | 81 | 95.1 | 4.97 |
OC (%) | 40.5 | 47.55 | 2.88 |
Carrier | Coffee Pulp | Biochar | Soil | |||
---|---|---|---|---|---|---|
Strain | B9 | B11 | B9 | B11 | B9 | B11 |
Survival rate (%) | 89.1 | 73.4 | 79.4 | 63.1 | 22.3 | 39.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouam, I.D.; Tchamani, L.; Ntsoli, G.; Bedine, M.A.; Titti, R.W.; Yaouba, A. Effect of Different Carriers and Storage Temperatures on the Viability of Bacillus thuringiensis B9 and Bacillus pacificus B11 Isolated from Tomato (Solanum lycopersicum L.) Rhizosphere. Biol. Life Sci. Forum 2024, 30, 27. https://doi.org/10.3390/IOCAG2023-17337
Kouam ID, Tchamani L, Ntsoli G, Bedine MA, Titti RW, Yaouba A. Effect of Different Carriers and Storage Temperatures on the Viability of Bacillus thuringiensis B9 and Bacillus pacificus B11 Isolated from Tomato (Solanum lycopersicum L.) Rhizosphere. Biology and Life Sciences Forum. 2024; 30(1):27. https://doi.org/10.3390/IOCAG2023-17337
Chicago/Turabian StyleKouam, Idriss Djoko, Laverdure Tchamani, Germain Ntsoli, Marie Amperes Bedine, Roland Wilfried Titti, and Aoudou Yaouba. 2024. "Effect of Different Carriers and Storage Temperatures on the Viability of Bacillus thuringiensis B9 and Bacillus pacificus B11 Isolated from Tomato (Solanum lycopersicum L.) Rhizosphere" Biology and Life Sciences Forum 30, no. 1: 27. https://doi.org/10.3390/IOCAG2023-17337
APA StyleKouam, I. D., Tchamani, L., Ntsoli, G., Bedine, M. A., Titti, R. W., & Yaouba, A. (2024). Effect of Different Carriers and Storage Temperatures on the Viability of Bacillus thuringiensis B9 and Bacillus pacificus B11 Isolated from Tomato (Solanum lycopersicum L.) Rhizosphere. Biology and Life Sciences Forum, 30(1), 27. https://doi.org/10.3390/IOCAG2023-17337