Micronutrient Fertilization Amplified the Antioxidant Capacity in Tomato Plants with Improved Growth and Yield †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Growth Stage | Days from Planting | Stage Duration (days) | Crop Age (days) | Dose (%) | Watering Volume (mL plant−1) | Watering Duration |
---|---|---|---|---|---|---|
Vegetative | 1–14 | 14 | 14 | 0.5 | 300 mL | Every 7 Days |
Budding | 15–28 | 14 | 28 | 1.0 | 300 mL | Every 7 Days |
Flowering | 29–35 | 7 | 35 | 1.5 | 300 mL | Every 7 Days |
References
- Mondal, S.; Bose, B. Impact of micronutrient seed priming on germination, growth, development, nutritional status and yield aspects of plants. J. Plant Nutr. 2019, 42, 2577–2599. [Google Scholar] [CrossRef]
- Welch, R.M.; Shuman, L. Micronutrient nutrition of plants. Crit. Rev. Plant Sci. 1995, 14, 49–82. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.D. Micronutrient deficiencies in crops and their global significance. In Micronutrient Deficiencies in Global Crop Production; Alloway, B.J., Ed.; Springer: Dordrecht, The Netherlands; Berlin, Germany, 2008; pp. 41–61. [Google Scholar] [CrossRef]
- Mihalache, G.; Peres, C.I.; Bodale, I.; Achitei, V.; Gheorghitoaie, M.V.; Teliban, G.C.; Cojocaru, A.; Butnariu, M.; Muraru, V.; Stoleru, V. Tomato crop performances under chemical nutrients monitored by electric signal. Agronomy 2020, 10, 1915. [Google Scholar] [CrossRef]
- Homayoonzadeh, M.; Hosseininaveh, V.; Reyhaniaghighi, S.; Talebi, K.; Roessner, U.; Maali-Amiri, R. Evaluation of physiological and biochemical responses of pistachio plants (Pistacia vera L.) exposed to pesticides. Ecotoxicology 2021, 30, 1084–1097. [Google Scholar] [CrossRef] [PubMed]
- Homayoonzadeh, M.; Moeini, P.; Talebi, K.; Allahyari, H.; Torabi, E.; Michaud, J.P. Physiological responses of plants and mites to salicylic acid improve the efficacy of spirodiclofen for controlling Tetranychus urticae (Acari: Tetranychidae) on greenhouse tomatoes. Exp. Appl. Acarol. 2020, 82, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Homayoonzadeh, M.; Esmaeily, M.; Talebi, K.; Allahyari, H.; Nozari, J.; Michaud, J.P. Micronutrient fertilization of greenhouse cucumbers mitigates pirimicarb resistance in Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 2020, 113, 2864–2872. [Google Scholar] [CrossRef] [PubMed]
- Homayoonzadeh, M.; Moeini, P.; Talebi, K.; Roessner, U.; Hosseininaveh, V. Antioxidant system status of cucumber plants under pesticides treatment. Acta Physiol. Plant 2020, 42, 161–172. [Google Scholar] [CrossRef]
- Millaleo, R.; Reyes-Díaz, M.; Ivanov, A.G.; Mora, M.L.; Alberdi, M. Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. J. Soil Sci. Plant Nutr. 2010, 10, 470–481. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, D.K.; Singh, S.; Gaur, S.; Singh, S.; Yadav, V.; Liu, S.; Singh, V.P.; Sharma, S.; Srivastava, P.; Prasad, S.M.; et al. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front. Environ. Sci. 2018, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Hansch, R.; Mendel, R.R. Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Burkhead, J.L.; Gogolin Reynolds, K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.I.R.; Fatma, M.; Per, T.S.; Anjum, N.A.; Khan, N.A. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Front. Plant Sci. 2015, 6, 462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Parihar, P.; Singh, R.; Prasad, S.M. An assessment to show toxic nature of beneficial trace metals: Too much of good thing can be bad. Int. J. Curr. Multidiscip. Stud. 2016, 2, 141–144. [Google Scholar]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 2011, 402647. [Google Scholar] [CrossRef] [Green Version]
- Arif, N.; Yadav, V.; Singh, S.; Singh, S.; Ahmad, P.; Mishra, R.K.; Sharma, S.; Tripathi, D.K.; Dubey, N.K.; Chauhan, D.K. Influence of high and low levels of plant-beneficial heavy metal ions on plant growth and development. Front. Environ. Sci. 2016, 4, 69. [Google Scholar] [CrossRef]
Parameters | Control | Treatment | p-Value | t-Value |
---|---|---|---|---|
Stem diameter (mm) | 8.44 ± 0.29 | 11.16 ± 0.36 * | 0.031 | 2.559 |
Root length (m) | 4.81 ± 0.45 | 6.69 ± 0.69 * | 0.028 | 3.664 |
Number of leaves per plant | 41.1 ± 2.31 | 56.3 ± 3.12 * | 0.019 | 4.719 |
Stem height (m) | 3.41 ± 0.19 | 3.89 ± 0.22 * | 0.042 | 2.873 |
Fruit fresh weight (g) | 82.1 ± 4.21 | 96.49 ± 3.81 * | 0.036 | 3.964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homayoonzadeh, M.; Torabi, E.; Talebi, K.; Allahyari, H.; Nozari, J. Micronutrient Fertilization Amplified the Antioxidant Capacity in Tomato Plants with Improved Growth and Yield. Biol. Life Sci. Forum 2022, 11, 62. https://doi.org/10.3390/IECPS2021-12008
Homayoonzadeh M, Torabi E, Talebi K, Allahyari H, Nozari J. Micronutrient Fertilization Amplified the Antioxidant Capacity in Tomato Plants with Improved Growth and Yield. Biology and Life Sciences Forum. 2022; 11(1):62. https://doi.org/10.3390/IECPS2021-12008
Chicago/Turabian StyleHomayoonzadeh, Mohammad, Ehssan Torabi, Khalil Talebi, Hossein Allahyari, and Jamasb Nozari. 2022. "Micronutrient Fertilization Amplified the Antioxidant Capacity in Tomato Plants with Improved Growth and Yield" Biology and Life Sciences Forum 11, no. 1: 62. https://doi.org/10.3390/IECPS2021-12008
APA StyleHomayoonzadeh, M., Torabi, E., Talebi, K., Allahyari, H., & Nozari, J. (2022). Micronutrient Fertilization Amplified the Antioxidant Capacity in Tomato Plants with Improved Growth and Yield. Biology and Life Sciences Forum, 11(1), 62. https://doi.org/10.3390/IECPS2021-12008