Previous Issue
Volume 5, June
 
 

Coasts, Volume 5, Issue 3 (September 2025) – 7 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
17 pages, 12127 KiB  
Article
Shoreline Response to Hurricane Otis and Flooding Impact from Hurricane John in Acapulco, Mexico
by Luis Valderrama-Landeros, Iliana Pérez-Espinosa, Edgar Villeda-Chávez, Rafael Alarcón-Medina and Francisco Flores-de-Santiago
Coasts 2025, 5(3), 28; https://doi.org/10.3390/coasts5030028 - 4 Aug 2025
Abstract
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 [...] Read more.
The city of Acapulco was impacted by two near-consecutive hurricanes. On 25 October 2023, Hurricane Otis made landfall, reaching the highest Category 5 storm on the Saffir–Simpson scale, causing extensive coastal destruction due to extreme winds and waves. Nearly one year later (23 September 2024), Hurricane John—a Category 2 storm—caused severe flooding despite its lower intensity, primarily due to its unusual trajectory and prolonged rainfall. Digital shoreline analysis of PlanetScope images (captured one month before and after Hurricane Otis) revealed that the southern coast of Acapulco, specifically Zona Diamante—where the major seafront hotels are located—experienced substantial shoreline erosion (94 ha) and damage. In the northwestern section of the study area, the Coyuca Bar experienced the most dramatic geomorphological change in surface area. This was primarily due to the complete disappearance of the bar on October 26, which resulted in a shoreline retreat of 85 m immediately after the passage of Hurricane Otis. Sentinel-1 Synthetic Aperture Radar (SAR) showed that Hurricane John inundated 2385 ha, four times greater than Hurricane Otis’s flooding (567 ha). The retrofitted QGIS methodology demonstrated high reliability when compared to limited in situ local reports. Given the increased frequency of intense hurricanes, these methods and findings will be relevant in other coastal areas for monitoring and managing local communities affected by severe climate events. Full article
Show Figures

Figure 1

14 pages, 3804 KiB  
Article
Geospatial Analysis of Heavy Metal Concentrations in the Coastal Marine Environment of Beihai, Guangxi During April 2021
by Chaolu, Bo Miao and Na Qian
Coasts 2025, 5(3), 27; https://doi.org/10.3390/coasts5030027 - 1 Aug 2025
Viewed by 96
Abstract
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, [...] Read more.
Heavy metal pollution from human activities is an increasing environmental concern. This study investigates the concentrations of Cu, Pb, Zn, Cd, Hg, and As in the coastal seawater offshore of Beihai, Guangxi, in April 2021, and explores their relationships with dissolved inorganic nitrogen, phosphate, and salinity. Our results reveal higher heavy metal concentrations in the northern nearshore waters and lower levels in southern offshore areas, with surface waters generally exhibiting greater enrichment than bottom waters. Surface concentrations show a decreasing trend from the northeast to the southwest, likely influenced by prevailing northeast monsoon winds. While bottom water concentrations decline from the northwest to the southeast, which indicates the influence of riverine runoff, particularly from the Qinzhou Bay estuary. Heavy metal levels in southern Beihai waters are comparable to those in the Beibu Gulf, except for Hg and Zn, which are significantly higher in the water of the Beibu Gulf. Notably, heavy metal concentrations in both Beihai and Beibu Gulf remain considerably lower than those observed in the coastal waters of Guangdong. Overall, Beihai’s coastal seawater meets China’s Class I quality standards. Nonetheless, continued monitoring is essential, especially of the potential ecological impacts of Hg and Zn on marine life. Full article
Show Figures

Figure 1

17 pages, 7301 KiB  
Article
Environmental Analysis for the Implementation of Underwater Paths on Sepultura Beach, Southern Brazil: The Case of Palythoa caribaeorum Bleaching Events at the Global Southern Limit of Species Distribution
by Rafael Schroeder, Lucas Gavazzoni, Carlos E. N. de Oliveira, Pedro H. M. L. Marques and Ewerton Wegner
Coasts 2025, 5(3), 26; https://doi.org/10.3390/coasts5030026 - 28 Jul 2025
Viewed by 167
Abstract
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura [...] Read more.
Recreational diving depends on healthy marine ecosystems, yet it can harm biodiversity through species displacement and habitat damage. Bombinhas, a biodiverse diving hotspot in southern Brazil, faces growing threats from human activity and climate change. This study assessed the ecological structure of Sepultura Beach (2018) for potential diving trails, comparing it with historical data from Porto Belo Island. Using visual censuses, transects, and photo-quadrats across six sampling campaigns, researchers documented 2419 organisms from five zoological groups, identifying 14 dominant species, including Haemulon aurolineatum and Diplodus argenteus. Cluster analysis revealed three ecological zones, with higher biodiversity at the site’s edges (Groups 1 and 3), but these areas also hosted endangered species like Epinephelus marginatus, complicating trail planning. A major concern was the widespread bleaching of the zoanthid Palythoa caribaeorum, a key ecosystem engineer, likely due to rising sea temperatures (+1.68 °C from 1961–2018) and declining chlorophyll-a levels post-2015. Comparisons with past data showed a 0.33 °C increase in species’ thermal preferences over 17 years, alongside lower trophic levels and greater ecological vulnerability, indicating tropicalization from the expanding Brazil Current. While Sepultura Beach’s biodiversity supports diving tourism, conservation efforts must address coral bleaching and endangered species protection. Long-term monitoring is crucial to track warming impacts, and adaptive management is needed for sustainable trail development. The study highlights the urgent need to balance ecotourism with climate resilience in subtropical marine ecosystems. Full article
Show Figures

Figure 1

21 pages, 13177 KiB  
Article
Links Between the Coastal Climate, Landscape Hydrology, and Beach Dynamics near Cape Vidal, South Africa
by Mark R. Jury
Coasts 2025, 5(3), 25; https://doi.org/10.3390/coasts5030025 - 18 Jul 2025
Viewed by 267
Abstract
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport [...] Read more.
Coastal climate processes that affect landscape hydrology and beach dynamics are studied using local and remote data sets near Cape Vidal (28.12° S, 32.55° E). The sporadic intra-seasonal pulsing of coastal runoff, vegetation, and winds is analyzed to understand sediment inputs and transport by near-shore wind-waves and currents. River-borne sediments, eroded coral substrates, and reworked beach sand are mobilized by frequent storms. Surf-zone currents ~0.4 m/s instill the northward transport of ~6 105 kg/yr/m. An analysis of the mean annual cycle over the period of 1997–2024 indicates a crest of rainfall over the Umfolozi catchment during summer (Oct–Mar), whereas coastal suspended sediment, based on satellite red-band reflectivity, rises in winter (Apr–Sep) due to a deeper mixed layer and larger northward wave heights. Sediment input to the beaches near Cape Vidal exhibit a 3–6-year cycle of southeasterly waves and rainy weather associated with cool La Nina tropical sea temperatures. Beachfront sand dunes are wind-swept and release sediment at ~103 m3/yr/m, which builds tall back-dunes and helps replenish the shoreline, especially during anticyclonic dry spells. A wind event in Nov 2018 is analyzed to quantify aeolian transport, and a flood in Jan–Feb 2025 is studied for river plumes that meet with stormy seas. Management efforts to limit development and recreational access have contributed to a sustainable coastal environment despite rising tides and inland temperatures. Full article
Show Figures

Figure 1

15 pages, 1508 KiB  
Article
Satellite and Statistical Approach for the Characterization of Coastal Storms Causing Damage on the Dakar Coast, Capital of Senegal (West Africa)
by Cheikh Omar Tidjani Cisse
Coasts 2025, 5(3), 24; https://doi.org/10.3390/coasts5030024 - 16 Jul 2025
Viewed by 285
Abstract
Today, coastal storms represent one of the most formidable environmental challenges, causing significant impacts on coastal communities. This situation underscores both the importance and urgency of studying storms and their characterization. This study proposes an innovative approach combining Principal Component Analysis (PCA) and [...] Read more.
Today, coastal storms represent one of the most formidable environmental challenges, causing significant impacts on coastal communities. This situation underscores both the importance and urgency of studying storms and their characterization. This study proposes an innovative approach combining Principal Component Analysis (PCA) and machine learning (Classification and Regression Trees, CART) to characterize and distinguish damaging storms from non-damaging ones along the coast of Dakar, Senegal. The analysis revealed that among several hydrometeorological variables studied (wave height, period, direction, runup, wave energy, sea level anomaly, tide, etc.), the variables SLA and tide play a central role in the occurrence of damage, although they are weakly correlated with the others. By cross-analyzing these variables, critical thresholds were established, such as Tide > 0.53 m combined with SLA ≥ 0.061 m, Tide > 0.53 m and ECWL ≥ 1.3 m, as well as Runup ≤ 0.64 m associated with a high wave period (Tp), allowing accurate differentiation of potentially damaging storms. The CART method validated these results and identified three key combinations: (1) Tide–SLA, where no damage is observed if Tide < 0.53 m, and damage occurs beyond this threshold when SLA ≥ 0.061 m; (2) Tide–ECWL, where storms are damaging if Tide > 0.53 m and ECWL ≥ 1.3 m; (3) Runup–Tp, where storms are damaging if Runup ≤ 0.64 m or if Runup > 0.82 m with Tp ≥ 16 s. These results constitute the first application of machine learning for storm classification on the Senegalese coast, providing a novel quantitative foundation for better understanding the hydrodynamic conditions associated with damaging storms. The findings of this study could be valuable for risk management and the development of early warning systems Full article
Show Figures

Figure 1

22 pages, 5724 KiB  
Article
Temporal and Spatial Variability of Hydrogeomorphological Attributes in Coastal Wetlands—Lagoa do Peixe National Park, Brazil
by Carina Cristiane Korb, Laurindo Antonio Guasselli, Heinrich Hasenack, Tássia Fraga Belloli and Christhian Santana Cunha
Coasts 2025, 5(3), 23; https://doi.org/10.3390/coasts5030023 - 9 Jul 2025
Viewed by 271
Abstract
Coastal wetlands play important environmental roles. However, their hydrogeomorphological dynamics remain poorly understood under scenarios of extreme climate events. The aim of this study was to characterize the temporal and spatial variability of hydrogeomorphological attributes (vegetation, water, and soil) in the wetlands of [...] Read more.
Coastal wetlands play important environmental roles. However, their hydrogeomorphological dynamics remain poorly understood under scenarios of extreme climate events. The aim of this study was to characterize the temporal and spatial variability of hydrogeomorphological attributes (vegetation, water, and soil) in the wetlands of Lagoa do Peixe National Park, Brazil. The methodology involved applying Principal Component Analysis (PCA) in both temporal (T) and spatial (S) modes, decomposing spectral indices for each attribute to identify variability patterns. The results revealed that vegetation and water are strongly correlated with seasonal dynamics influenced by ENSO (El Niño/La Niña) events. Soils reflected their textural characteristics, with a distinct temporal response to the water balance. PCA proved to be a useful tool for synthesizing large volumes of multitemporal data and detecting dominant variability patterns. It highlighted the Lagoon Terraces and the Lagoon Fringe, where low slopes amplified hydrological variations. Temporal variability was more responsive to climate extremes, with implications for ecosystem conservation, while spatial variability was modulated by geomorphology. Full article
Show Figures

Figure 1

15 pages, 1972 KiB  
Article
Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary
by Emanuelle Bezerra Maciel, Maria Luísa de Araújo Albuquerque and André Luiz Machado Pessanha
Coasts 2025, 5(3), 22; https://doi.org/10.3390/coasts5030022 - 3 Jul 2025
Viewed by 252
Abstract
Intraspecific variations in the morphological traits of juveniles and adults of the Brazilian silverside, Atherinella brasiliensis, from three estuarine habitats were studied to understanding whether their morphology interacts with their dietary composition and habitat structure. For each individual, fourteen morphological measurements and eight [...] Read more.
Intraspecific variations in the morphological traits of juveniles and adults of the Brazilian silverside, Atherinella brasiliensis, from three estuarine habitats were studied to understanding whether their morphology interacts with their dietary composition and habitat structure. For each individual, fourteen morphological measurements and eight functional traits were recorded related to food acquisition and locomotion. The highest abundance of A. brasiliensis was recorded in mudflats, which were often associated with a greater number of juveniles. Overall, 392 A. brasiliensis stomachs were examined, and their diet comprised mainly zooplankton organisms, followed by insects and benthic crustaceans. Among the morphological measures, our data revealed that in vegetated habitats (seagrass and riparian vegetation), individuals showed a higher oral gape surface and caudal peduncle and fed predominately on epibiotic or benthic fauna, while for individuals that had bigger eyes in unvegetated habitats (mudflat), this facilitated the ingestion of zooplankton and diatoms. Furthermore, a greater relative body height recorded in unvegetated habitats enhanced swimming performance and was linked to the effects of the lowest habitat structure. The results highlight the significant effects of morphological variation on juvenile and adult food acquisition and swimming ability. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop