Previous Issue
Volume 5, March
 
 

Coasts, Volume 5, Issue 2 (June 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 3624 KiB  
Article
Meiofauna from Almirante Câmara Canyon and Its Adjacent Open Slope, Southwest Atlantic Ocean
by André M. Esteves, Verônica S. Oliveira, Paulo J. P. dos Santos, Tatiana F. Maria and Adriane P. Wandeness
Coasts 2025, 5(2), 14; https://doi.org/10.3390/coasts5020014 - 17 Apr 2025
Viewed by 94
Abstract
The patterns of meiofaunal distribution in a submarine canyon and adjacent open-slope habitats at Campos Basin, southwest Atlantic, were investigated. A total of eight stations was sampled, four inside the Canyon Almirante Câmara and four on the adjacent open slope. These stations represented [...] Read more.
The patterns of meiofaunal distribution in a submarine canyon and adjacent open-slope habitats at Campos Basin, southwest Atlantic, were investigated. A total of eight stations was sampled, four inside the Canyon Almirante Câmara and four on the adjacent open slope. These stations represented four isobaths (400, 700, 1000, 1300 m) and were sampled during two distinct periods (2008, 2009). At each station, three replicates were obtained and sectioned into layers of 0–2, 2–5 and 5–10 cm. Nematoda was the most abundant group in both habitats, comprising more than 85% of the total meiofauna in both sampling periods. The density and assemblage structure of the meiofauna showed high variability between the 400 m isobath and the other three isobaths in the canyon habitat. These results reinforce the roles of habitat heterogeneity and the availability of food sources as key factors strongly influencing the deep-sea meiofauna in the southwest Atlantic Ocean. Phytopigments were significantly correlated with the two major meiofaunal groups (Nematoda and Copepoda), as well as with total meiofaunal density, only in the canyon habitat. On the adjacent open slope, only copepods showed a significant correlation with sediment characteristics (mean grain size and carbonates), suggesting that distinct environmental factors influence the distribution of meiofauna in the two habitats. Full article
Show Figures

Figure 1

14 pages, 4015 KiB  
Article
Marine Macro-Plastics Litter Features and Their Relation to the Geographical Settings of the Selected Adriatic Islands, Croatia (2018–2023)
by Natalija Špeh and Robert Lončarić
Coasts 2025, 5(2), 13; https://doi.org/10.3390/coasts5020013 - 10 Apr 2025
Viewed by 138
Abstract
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features [...] Read more.
Marine litter (ML), encompassing human-made objects in marine ecosystems, poses significant threats to the coasts of some Adriatic islands, despite their remoteness and sparse populations. These islands, reliant on tourism, are particularly vulnerable to ML pollution. This study hypothesized that the natural features of the islands influence ML distribution. It employes an integrated geographic approach combining the results of field survey (via sea kayaking) with various indicators which include: (1) coastal orientation and number density of bays, (2) vegetation exposure and biomass share, (3) island area and number density of bays, (4) bay openness and ML quantity, and (5) bay openness and plastic prevalence in ML. Focusing on islands of Lošinj, Pašman, Vis, and the Kornati and Elaphiti archipelago, the study analyzed data collected over six years (2018–2023). Results highlighted that NW-SE and W-E coastal orientations are particularly susceptible to ML accumulation, especially in the southern Adriatic. Linear Fitting Regression analyses revealed a stronger correlation between number density of polluted bays and the surface area of smaller islands (<10 km2) compared to larger islands (>10 km2). The following findings underscore the need for international collaboration and stringent policies to mitigate ML pollution, ensuring the protection of Adriatic marine ecosystems and the sustainability of local communities. Full article
Show Figures

Figure 1

12 pages, 1746 KiB  
Article
Revetment Rock Armour Stability Under Depth-Limited Breaking Waves
by Alexander F. Nielsen and Angus D. Gordon
Coasts 2025, 5(2), 12; https://doi.org/10.3390/coasts5020012 - 2 Apr 2025
Viewed by 385
Abstract
This article presents a rock armour stability formula for coastal revetments under depth-limited breaking waves that defines requisite armour mass as a function of incident wave energy. Parameters include wave height, wave period, toe depth, revetment slope, specific gravity of armour and water, [...] Read more.
This article presents a rock armour stability formula for coastal revetments under depth-limited breaking waves that defines requisite armour mass as a function of incident wave energy. Parameters include wave height, wave period, toe depth, revetment slope, specific gravity of armour and water, percentage damage and the number of waves. The formula has been calibrated empirically based on university research flume test data. It departs from existing approaches by using wave energy in lieu of wave height as the disturbing parameter, but adopts other parameters developed by previous researchers. Results are compared with established formulae and display better coherence with the flume data. Testing constraints including possible scale effects are highlighted. Recommendations are made for further testing including the effects of seabed slope. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop