Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Morphological Traits
2.4. Diet Analysis
2.5. Statistical Analyses
3. Results
3.1. Distribution and Abundance
3.2. Diet
3.3. Morphological Traits
3.4. Relationship Between Morphological Traits and Diet
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beck, M.W.; Heck, K.L.; Able, K.W.; Childers, D.L.; Eggleston, D.B.; Gillanders, B.M.; Halpern, B.; Hays, C.G.; Hoshino, K.; Minello, T.J.; et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates: A better understanding of the habitats that serve as nurseries for marine species and the factors that create site-specific variability in nursery quality will improve conservation and management of these areas. Bioscience 2001, 51, 633–641. [Google Scholar] [CrossRef]
- Brown, C.J.; Harborne, A.R.; Paris, C.B.; Mumby, P.J. Uniting paradigms of connectivity in marine ecology. Ecology 2016, 97, 2447–2457. [Google Scholar] [CrossRef] [PubMed]
- Gillanders, B.M.; Able, K.W.; Brown, J.A.; Eggleston, D.B.; Sheridan, P.F. Evidence of connectivity between juvenile and adult habitats for mobile marine fauna: An important component of nurseries. Mar. Ecol. Prog. Ser. 2003, 247, 281–295. [Google Scholar] [CrossRef]
- Johnsen, S.; Widder, E.A. Ultraviolet absorption in transparent zooplankton and its implications for depth distribution and visual predation. Mar. Biol. 2001, 138, 717–730. [Google Scholar] [CrossRef]
- Sheaves, M. Consequences of ecological connectivity: The coastal ecosystem mosaic. Mar. Ecol. Prog. Ser. 2009, 391, 107–115. [Google Scholar] [CrossRef]
- Kimirei, I.A.; Nagelkerken, I.; Griffioen, B.; Wagner, C.; Mgaya, Y.D. Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuar. Coast. Shelf. Sci. 2011, 92, 47–58. [Google Scholar] [CrossRef]
- Whitfield, A.K. The role of seagrass meadows, mangrove forests, salt marshes and reed beds as nursery areas and food sources for fishes in estuaries. Rev. Fish. Biol. Fish 2017, 27, 75–110. [Google Scholar] [CrossRef]
- Sales, N.S.; Dias, T.L.P.; Baeta, A.; Pessanha, A.L.M. Dependence of juvenile reef fishes on semi-arid hypersaline estuary microhabitats as nurseries. J. Fish. Biol. 2016, 89, 661–679. [Google Scholar] [CrossRef]
- Sales, N.S.; Baeta, A.S.B.V.; de Lima, L.G.; Pessanha, A.L.M. Do the shallow-water habitats of a hypersaline tropical estuary act as nursery grounds for fishes? Mar. Ecol. 2018, 39, e12473. [Google Scholar] [CrossRef]
- Silva, R.S.; Baeta, A.S.; Pessanha, A.L. Are vegetated areas more attractive for juvenile fishin estuaries? A comparison in a tropical estuary. Environ. Biol. Fishes 2018, 101, 1427–1442. [Google Scholar] [CrossRef]
- Laegdsgaard, P.; Johnson, C. Why do juvenile fish utilise mangrove habitats? J. Exp. Mar. Biol. Ecol. 2001, 257, 229–253. [Google Scholar] [CrossRef] [PubMed]
- Sheaves, M. Nature and consequences of biological connectivity in mangrove systems. Mar. Ecol. Prog. Ser. 2005, 302, 293–305. [Google Scholar] [CrossRef]
- Campos, D.M.; Silva, A.F.; Sales, N.S.; Oliveira, R.E.; Pessanha, A.L. Trophic relationships among fish assemblages in a mudflat within Brazilian marine protected area. Braz. J. Oceanogr. 2015, 63, 135–146. [Google Scholar] [CrossRef]
- Lugendo, B.R.; Nagelkerken, I.; Velde, G.V.; Mgaya, Y.D. The importance of mangroves, mud and sand flats, and seagrass beds as feeding areas for juvenile fishes in Chwaka Bay, Zanzibar: Gut content and stable isotope analyses. J. Fish. Biol. 2006, 69, 1639–1661. [Google Scholar] [CrossRef]
- Favero, J.M.; Dias, J.F. Juvenile fish use of the shallow zone of beaches of the Cananéia-Iguape coastal system, southeastern Brazil. Braz. J. Oceanogr. 2015, 63, 103–114. [Google Scholar] [CrossRef]
- Oliveira, R.E.; Pessanha, A.L. Fish assemblages along a morphodynamic continuum on three tropical beaches. Neotrop. Ichthyol. 2014, 12, 165–175. [Google Scholar] [CrossRef]
- Sheaves, M.; Baker, R.; Nagelkerken, I.; Connolly, R.M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuar. Coast 2015, 38, 401–414. [Google Scholar] [CrossRef]
- Becker, A.; Coppinger, C.; Whitfield, A.K. Influence of tides on assemblages and behaviour of fishes associated with shallow seagrass edges and bare sand. Mar. Ecol. Prog. Ser. 2012, 456, 187–199. [Google Scholar] [CrossRef]
- Marley, G.S.; Deacon, A.E.; Phillip, D.A.; Lawrence, A.J. Mangrove or mudflat: Prioritising fish habitat for conservation in a turbid tropical estuary. Estuar. Coast. Shelf. Sci. 2020, 240, 106788. [Google Scholar] [CrossRef]
- Pessanha, A.L.M.; Araújo, F.G. Recrutamento do peixe-rei, Atherinella brasiliensis (Quoy & Gaimard) (Atheriniformes, Atherinopsidae), na margem continental da Baía de Sepetiba, Rio de Janeiro, Brasil. Rev. Bras. Zool. 2001, 18, 1265–1274. [Google Scholar] [CrossRef]
- Motta, P.J.; Clifton, K.B.; Hernandez, P.; Eggold, B.T. Ecomorphological correlates in ten species of subtropical seagrass fishes: Diet and microhabitat utilization. Environ. Biol. Fishes 1995, 44, 37–60. [Google Scholar] [CrossRef]
- Norton, S.F.; Luczkovich, J.J.; Motta, P.J. The role of ecomorphological studies in the comparative biology of fishes. Environ. Biol. Fishes 1995, 44, 287–304. [Google Scholar] [CrossRef]
- Shuai, F.; Yu, S.; Lek, S.; Li, X. Habitat effects on intra-species variation in functional morphology: Evidence from freshwater fish. Ecol. Evol. 2018, 8, 10902–10913. [Google Scholar] [CrossRef]
- Jonsson, B.; Jonsson, N. Early environment influences later performance in fishes. J. Fish. Biol. 2014, 85, 151–188. [Google Scholar] [CrossRef] [PubMed]
- Júnior, A.D.G.F.V.; Lima, D.E.P.C.; Santos, N.S.; Terra, B.F.; Pessanha, A.L.M. Trade-offs between ontogenetic changes and food consumption in Brazilian silverside Atherinella brasiliensis from two tropical estuaries. J. Fish. Biol. 2020, 98, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Baldasso, M.C.; Wolff, L.L.; Neves, M.P.; Delariva, R.L. Ecomorphological variations and food supply drive trophic relationships in the fish fauna of a pristine neotropical stream. Environ. Biol. Fishes 2019, 102, 783–800. [Google Scholar] [CrossRef]
- Delariva, R.L.; Neves, M.P. Morphological traits correlated with resource partitioning among small characin fish species coexisting in a Neotropical river. Ecol. Freshw. Fish 2020, 29, 640–653. [Google Scholar] [CrossRef]
- Alves, V.E.N.; Patrício, J.; Dolbeth, M.; Pessanha, A.; Palma, A.R.T.; Dantas, E.W.; Vendel, A.L. Do different degrees of human activity affect the diet of Brazilian silverside Atherinella brasiliensis? J. Fish. Biol. 2016, 89, 1239–1257. [Google Scholar] [CrossRef]
- Neves, L.M.; Pereira, H.H.; Costa, M.R.; Araújo, F.G. Uso do manguezal de Guaratiba, Baía de Sepetiba, Rio de Janeiro, pelo peixe-rei Atherinella brasiliensis (Quoy & Gaimard) (Atheriniformes, Atherinopsidae). Rev. Bras. Zool. 2006, 23, 421–428. [Google Scholar] [CrossRef]
- Andreata, J.V.; Manzano, F.V.; Baptista, M.G.S.; Teixeira, D.E.; de Oliveira, L.O.V.; Longo, M.M.; Freret, N.V.; Valois, A.S. Assembléia de peixes da lagoa Rodrigo de Freitas, Rio de Janeiro. Bioikos 2002, 16, 19–28. [Google Scholar]
- Neves, L.M.; Teixeira, T.P.; Franco, T.P.; Pereira, H.H.; Araújo, F.G. Fish composition and assemblage structure in the estuarine mixing zone of a tropical estuary: Comparisons between the main channel and an adjacent lagoon. Mar. Biol. Res. 2013, 9, 661–675. [Google Scholar] [CrossRef]
- Pessanha, A.L.M.; Araújo, F.G.; Oliveira, R.E.M.; Silva, A.F.D.; Sales, N.S. Ecomorphology and resource use by dominant species of tropical estuarine juvenile fishes. Neotrop. Ichthyol. 2015, 13, 401–412. [Google Scholar] [CrossRef]
- de Carvalho, B.M.; Spach, H.L. Habitat use by Atherinella brasiliensis (Quoy & Gaimard, 1825) in intertidal zones of a subtropical estuary, Brazil. Acta. Sci. Biol. Sci. 2015, 37, 177–184. [Google Scholar] [CrossRef]
- Dolbeth, M.; Vendel, A.L.; Pessanha, A.; Patrício, J. Functional diversity of fish communities in two tropical estuaries subjected to anthropogenic disturbance. Mar. Pollut. Bull. 2016, 112, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, A.P.M.D.; Xavier, J.H.D.A.; Rosa, I.M.D.L. Diet and trophic organization of the fish assemblage from the Mamanguape River Estuary, Brazil. Lat. Am. J. Aquat. Res. 2017, 45, 879–890. [Google Scholar] [CrossRef]
- Claudino, M.C.; Pessanha, A.L.M.; Araújo, F.G.; Garcia, A.M. Trophic connectivity and basal food sources sustaining tropical aquatic consumers along a mangrove to ocean gradient. Estuar. Coast. Shelf. Sci. 2015, 167, 45–55. [Google Scholar] [CrossRef]
- Contente, R.F.; Stefanoni, M.F.; Spach, H. Feeding ecology of the Brazilian silverside Atherinella brasiliensis (Atherinopsidae) in a sub-tropical estuarine ecosystem. J. Mar. Biolog. Assoc. UK 2011, 91, 1197. [Google Scholar] [CrossRef]
- Prado, A.V.; Goulart, E.; Pagotto, J.P. Ecomorphology and use of food resources: Inter- and intraspecific relationships of fish fauna associated with macrophyte stands. Neotrop. Ichthyol. 2016, 14, e150140. [Google Scholar] [CrossRef]
- Soares, B.E.; Ruffeil, T.O.; Montag, L.F. Ecomorphological patterns of the fishes inhabiting the tide pools of the Amazonian Coastal Zone, Brazil. Neotrop. Ichthyol. 2013, 11, 845–858. [Google Scholar] [CrossRef]
- Figueiredo, G.G.A.A.; Pessanha, A.L.M. Comparative study of trophic organization of juvenile fish assemblages of three tidal creeks in a tropical semi-arid estuary. J. Fish. Biol. 2016, 89, 680–695. [Google Scholar] [CrossRef]
- Manna, L.R.; Rezende, C.F.; Mazzoni, R. Effect of body size on microhabitat preferences in stream-dwelling fishes. J. Appl. Ichthyol. 2017, 33, 193–202. [Google Scholar] [CrossRef]
- Manna, L.R.; Villéger, S.; Rezende, C.F.; Mazzoni, R. High intraspecific variability in morphology and diet in tropical stream fish communities. Ecol. Freshw. Fish 2019, 28, 41–52. [Google Scholar] [CrossRef]
- Brito, G.J.; Lima, L.G.D.; Oliveira, R.E.; Pessanha, A. Intraspecific food resource partitioning in Brazilian silverside Atherinella brasiliensis (Atheriniformes: Atherinopsidae) in a tropical estuary, Brazil. Neotrop. Ichthyol. 2019, 17, e180108. [Google Scholar] [CrossRef]
- Medeiros, I.D.S.; de Assis, H.Y.; Dantas, M.D.S.; Clemente, T.S.; Almeida, N.V. Environmental Vulnerability of the Environmental Protection Area of the Mamanguape River Bar-PB. In Proceedings of the XIX GEOINFO, Campina Grande, Brazil, 5–7 December 2018; pp. 92–102. [Google Scholar]
- Rocha, M.D.S.P.; Mourão, J.D.S.; Souto, W.D.M.S.; Barboza, R.R.D.; Alves, R.R.D.N. O uso dos recursos pesqueiros no estuário do rio mamanguape, estado da Paraíba, Brasil. Interciencia 2008, 33, 903–910. [Google Scholar]
- Mourão, J.; Nordi, N. Etnoictiologia de pescadores artesanais do estuário do rio Mamanguape, Paraíba, Brasil. Bol. Inst. Pesca 2003, 29, 9–17. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2014, 22, 711–728. [Google Scholar] [CrossRef]
- Magalhães, K.M.; Borges, J.C.; Pitanga, M.E. Halophila baillonis Ascherson: First population dynamics data for the Southern Hemisphere. An. Acad. Bras. Ciênc. 2015, 87, 861–865. [Google Scholar] [CrossRef]
- Xavier, J.H.; Cordeiro, C.A.; Tenório, G.D.; Diniz, A.D.; Júnior, E.P.; Rosa, R.S.; Rosa, I.L. Fish assemblage of the Mamanguape Environmental Protection Area, NE Brazil: Abundance, composition and microhabitat availability along the mangrove-reef gradient. Neotrop. Ichthyol. 2012, 10, 109–122. [Google Scholar] [CrossRef]
- Sibbing, F.A.; Nagelkerke, L.A. Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics. Rev. Fish. Biol. Fish 2001, 10, 393–437. [Google Scholar] [CrossRef]
- Schaefer, K.M. An evaluation of geographic and annual variation in morphometric characters and gill-raker counts of yellowfin tuna, Thunnus albacares, from the Pacific Ocean. Inter-Am. Trop. Tuna Comm. Bull. 1992, 20, 133–163. [Google Scholar]
- Gatz, A.J. Community organization in fishes as indicate. Ecology 1979, 60, 711–718. [Google Scholar] [CrossRef]
- Keast, A.; Webb, D. Mouth and body form relative to feeding ecology in the fish fauna of a small lake, Lake Opinicon, Ontario. J. Fish. Res. Board. Can. 1966, 23, 1845–1874. [Google Scholar] [CrossRef]
- Watson, D.J.; Balon, E.K. Ecomorphological analysis of fish taxocenes in rainforest streams of northern Borneo. J. Fish. Biol. 1984, 25, 371–384. [Google Scholar] [CrossRef]
- Freire, K.M.; Nascimento, F.P.; Rosário, L.M.; Rocha, G.R.; Alves, G.A.; Lins-Oliveira, J.E. Characterization of some biological aspects of Atherinella brasiliensis caught during sport fishing tournaments: A case study from northeastern Brazil. Bol. Inst. Pesca 2012, 38, 171–180. [Google Scholar]
- Hyslop, E.J. Stomach contents analysis—A review of methods and their application. J. Fish. Biol. 1980, 17, 411–429. [Google Scholar] [CrossRef]
- Bemvenuti, M.D.A. Hábitos alimentares de peixes-rei (Atherinidae) na região estuarina da Lagoa dos Patos, RS, Brasil. Atlântica 1990, 12, 79–102. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Prentice Hall International, Inc.: Hoboken, NJ, USA, 2009; p. 960. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing, Version 4.2.2; R Development Core Team: Vienna, Austria, 2022.
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- McArdle, B.H.; Anderson, M.J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 2001, 82, 290–297. [Google Scholar] [CrossRef]
- Anderson, M.; Gorley, R.; Clarke, K.P. PRIMER: Guide to Software and Statistical Methods; Primer-e: Plymouth, UK, 2008. [Google Scholar]
- Clarke, K.R.; Gorley, R.N. Primer; PRIMER-e: Plymouth, UK, 2006. [Google Scholar]
- Ruehl, C.B.; Shervette, V.; Dewitt, T.J. Replicated shape variation between simple and complex habitats in two estuarine fishes. Biol. J. Linn. Soc. 2011, 103, 147–158. [Google Scholar] [CrossRef]
- Becker, A.; Cowley, P.D.; Whitfield, A.K. Use of remote underwater video to record littoral habitat use by fish within a temporarily closed South African estuary. J. Exp. Mar. Biol. Ecol. 2010, 391, 161–168. [Google Scholar] [CrossRef]
- Fluker, B.L.; Pezold, F.; Minton, R.L. Molecular and morphological divergence in the inland silverside (Menidia beryllina) along a freshwater-estuarine interface. Environ. Biol. Fishes 2011, 91, 311. [Google Scholar] [CrossRef]
- Harding, H.R.; Gordon, T.A.; Eastcott, E.; Simpson, S.D.; Radford, A.N. Causes and consequences of intraspecific variation in animal responses to anthropogenic noise. Behav. Ecol. 2019, 30, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, L.; Wainwright, P.C. Ecomorphology of the eyes and skull in zooplanktivorous labrid fishes. Coral. Reefs 2011, 30, 415–428. [Google Scholar] [CrossRef]
- Caves, E.M.; Sutton, T.T.; Johnsen, S. Visual acuity in ray-finned fishes correlates with eye size and habitat. J. Exp. Biol. 2017, 220, 1586–1596. [Google Scholar] [CrossRef]
- Hartman, E.J.; Abrahams, M.V. Sensory compensation and the detection of predators: The interaction between chemical and visual information. Proc. R. Soc. Biol. Sci. 2000, 267, 571–575. [Google Scholar] [CrossRef]
- Pangle, K.L.; Malinich, T.D.; Bunnell, D.B.; DeVries, D.R.; Ludsin, S.A. Context-dependent planktivory: Interacting effects of turbidity and predation risk on adaptive foraging. Ecosphere 2012, 3, 1–18. [Google Scholar] [CrossRef]
- Lowe, M.L.; Morrison, M.A.; Taylor, R.B. Harmful effects of sediment-induced turbidity on juvenile fish in estuaries. Mar. Ecol. Prog. Ser. 2015, 539, 241–254. [Google Scholar] [CrossRef]
- Nilsson, D.E.; Warrant, E.; Johnsen, S. Computational visual ecology in the pelagic realm. Philos. Trans. R. Soc. Biol. Sci. 2014, 369, 20130038. [Google Scholar] [CrossRef]
- Ortega, J.C.; Figueiredo, B.R.; da Graça, W.J.; Agostinho, A.A.; Bini, L.M. Negative effect of turbidity on prey capture for both visual and non-visual aquatic predators. J. Anim. Ecol. 2020, 89, 2427–2439. [Google Scholar] [CrossRef]
- Buskey, E.J. Factors affecting feeding selectivity of visual predators on the copepod Acartia tonsa: Locomotion, visibility and escape responses. Hydrobiologia 1994, 292, 447–453. [Google Scholar] [CrossRef]
- Widder, E. Bioluminescence and the pelagic visual environment. Mar. Freshw. Behav. Phy. 2002, 35, 1–26. [Google Scholar] [CrossRef]
- Aksnes, D.L.; Nejstgaard, J.; Sædberg, E.; Sørnes, T. Optical control of fish and zooplankton populations. Limnol. Oceanogr. 2004, 49, 233–238. [Google Scholar] [CrossRef]
- Cochran-Biederman, J.L.; Winemiller, K.O. Relationships among habitat, ecomorphology and diets of cichlids in the Bladen River, Belize. Environ. Biol. Fishes 2010, 88, 143–152. [Google Scholar] [CrossRef]
- Matsumoto, K.; Kohda, M. The effect of feeding habitats on dietary shifts during the growth in a benthophagous suction-feeding fish. Zool. Sci. 2002, 19, 709–714. [Google Scholar] [CrossRef]
- Svanbäck, R.; Eklöv, P. Morphology dependent foraging efficiency in perch: A trade-off for ecological specialization? Oikos 2003, 102, 273–284. [Google Scholar] [CrossRef]
- Wainwright, P.C.; Carroll, A.M.; Collar, D.C.; Day, S.W.; Higham, T.E.; Holzman, R.A. Suction feeding mechanics, performance, and diversity in fishes. Integr. Comp. Biol. 2007, 47, 96–106. [Google Scholar] [CrossRef]
- Wainwright, P.C.; Day, S.W. The forces exerted by aquatic suction feeders on their prey. J. R. Soc. Interface 2007, 4, 553–560. [Google Scholar] [CrossRef]
- Motta, P.J.; Norton, S.F.; Luczkovich, J.J. Perspectives on the ecomorphology of bony fishes. Environ. Biol. Fishes 1995, 44, 11–20. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Glover, T.; Weis, J.S. The Impact of Mangrove Prop-Root Epibionts on Juvenile Reef Fishes: A Field Experiment Using Artificial Roots and Epifauna. Estuar. Coasts 2008, 31, 981–993. [Google Scholar] [CrossRef]
- MacDonald, J.A.; Weis, J.S. Fish community features correlate with prop root epibionts in Caribbean mangroves. J. Exp. Mar. Biol. Ecol. 2013, 441, 90–98. [Google Scholar] [CrossRef]
- Ferry, L.A.; Paig-Tran, E.M.; Gibb, A.C. Suction, ram, and biting: Deviations and limitations to the capture of aquatic prey. Integr. Comp. Biol. 2015, 55, 97–109. [Google Scholar] [CrossRef]
- Coughlin, D.J.; Strickler, J.R. Zooplankton capture by a coral reef fish: An adaptive response to evasive prey. Environ. Biol. Fishes 1990, 29, 35–42. [Google Scholar] [CrossRef]
- Norton, S.F. Capture success and diet of cottid fishes: The role of predator morphology and attack kinematics. Ecology 1991, 72, 1807–1819. [Google Scholar] [CrossRef]
- Burdon, F.J.; Harding, J.S. The linkage between riparian predators and aquatic insects across a stream-resource spectrum. Freshw. Biol. 2008, 53, 330–346. [Google Scholar] [CrossRef]
- Ramey, T.L.; Richardson, J.S. Terrestrial invertebrates in the riparian zone: Mechanisms underlying their unique diversity. BioScience 2017, 67, 808–819. [Google Scholar] [CrossRef]
- Nunn, A.D.; Tewson, L.H.; Cowx, I.G. The foraging ecology of larval and juvenile fishes. Rev. Fish. Biol. Fish 2012, 22, 377–408. [Google Scholar] [CrossRef]
- Pusey, B.J.; Arthington, A.H. Importance of the riparian zone to the conservation and management of freshwater fish: A review. Mar. Freshwater. Res. 2003, 54, 1–16. [Google Scholar] [CrossRef]
- Pease, A.A.; Justine, D.J.; Edwards, M.S.; Turner, T.F. Habitat and resource use by larval and juvenile fishes in an arid-land river (Rio Grande, New Mexico). Freshw. Biol. 2006, 51, 475–486. [Google Scholar] [CrossRef]
- Mise, F.T.; Fugi, R.; Pagotto, J.P.A.; Goulart, E. The coexistence of endemic species of Astyanax (Teleostei: Characidae) is propitiated by ecomorphological and trophic variations. Biota. Neotrop. 2013, 13, 21–28. [Google Scholar] [CrossRef]
Indices | Code | Formulae | Function | Ecological Meaning |
---|---|---|---|---|
Aspect of Pectoral Fin Ratio [55] | APFR | PFL/PFW | Position in the water column | High values indicate long and narrow fins and are associated with increased swimming speed. |
Compression Index [54] | CI | BH/BW | Position in the water column | High values indicate a laterally compressed fish that inhabit lenthic environments. |
Relative Height [52] | RH | BH/SL | Position in the water column | Related to the capacity for making vertical turns, and low values indicate an elongated fish. |
Caudal Peduncle Compression Index [55] | CPCI | CPH/CPW | Locomotion | High values are typical of less active swimmers. |
Relative Peduncle Length [52] | RPL | CPL/SL | Locomotion | Long peduncles indicate fish with good swimming ability. |
Eye size [23] | ES | ERH/HH | Food acquisition | Prey detection. |
Oral Gape Surface [32] | OGS | MWxMH/BWxBH | Food acquisition | Size of food items captured and ability to filter water. |
Relative Head Length [54] | RHL | HL/SL | Food acquisition | Higher values are related to larger prey sizes. |
Indices | Juveniles | Adults | ||||
---|---|---|---|---|---|---|
Pseudo-F | p | Proportion (%) | Pseudo-F | p | Proportion (%) | |
CI | 2.5808 | 0.0247 | 1.71 | 0.7453 | 0.6101 | 1.08 |
RH | 3.1973 | 0.0114 | 2.11 | 4.7926 | 0.0009 | 6.58 |
APFR | 0.54335 | 0.7617 | 3.65 | 2.0164 | 0.0740 | 2.87 |
RPL | 1.6723 | 0.1379 | 1.11 | 2.1394 | 0.0595 | 3.05 |
CPCI | 2.9371 | 0.0118 | 1.94 | 0.2249 | 0.9610 | 3.29 |
ES | 10.012 | 0.0001 | 6.33 | 5.4162 | 0.0004 | 7.38 |
RHL | 0.93344 | 0.4749 | 6.27 | 1.1951 | 0.3006 | 1.72 |
OGS | 5.3501 | 0.0003 | 3.48 | 2.3475 | 0.0476 | 3.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciel, E.B.; Albuquerque, M.L.d.A.; Pessanha, A.L.M. Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary. Coasts 2025, 5, 22. https://doi.org/10.3390/coasts5030022
Maciel EB, Albuquerque MLdA, Pessanha ALM. Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary. Coasts. 2025; 5(3):22. https://doi.org/10.3390/coasts5030022
Chicago/Turabian StyleMaciel, Emanuelle Bezerra, Maria Luísa de Araújo Albuquerque, and André Luiz Machado Pessanha. 2025. "Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary" Coasts 5, no. 3: 22. https://doi.org/10.3390/coasts5030022
APA StyleMaciel, E. B., Albuquerque, M. L. d. A., & Pessanha, A. L. M. (2025). Intraspecific Trait Variation in Body Sizes Is Associated with Diet and Habitat Use: Evidence from Atherinella brasiliensis in a Tropical Estuary. Coasts, 5(3), 22. https://doi.org/10.3390/coasts5030022