A Case for Trans-Regional Intertidal Research in Unstudied Areas in the Northeast and Southeast Pacific: Filling the Gaps
Abstract
:1. Introduction
2. Background
2.1. Measures of Diversity and the Disturbance Hypothesis
2.2. The Human Relationship with the Intertidal Zone
2.3. Research Conducted on Intertidal Ecosystems in the Pacific
3. The Focal Regions
3.1. The Need for Intertidal Census
3.2. Bioregional Classifications
4. Discussion and Future Directions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Helmuth, B.; Miezkowska, N.; Moore, P.; Hawkins, S.J. Living on the Edge of Two Changing Worlds: Forecasting the Responses of Rocky Intertidal Ecosystems to Climate Change. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 373–404. [Google Scholar] [CrossRef]
- Pandori, L.L.M.; Sorte, C.J.B. Spatial and Temporal Scales of Exposure and Sensitivity Drive Mortality Risk Patterns across Life Stages. Ecosphere 2021, 12, e03552. [Google Scholar] [CrossRef]
- Fenberg, P.B.; Menge, B.A. Interactions in the Marine Benthos; Cambridge University Press: Cambridge, UK, 2019; ISBN 978-1-108-23579-2. [Google Scholar]
- Szathmary, L.P.; Helmuth, B.; Wethey, D.S. Climate Change in the Rocky Intertidal Zone: Predicting and Measuring the Body Temperature of a Keystone Predator. Mar. Ecol. Prog. Ser. 2009, 374, 46–56. [Google Scholar] [CrossRef]
- Coletti, H.A.; Bodkin, J.L.; Monson, D.H.; Ballachey, B.E.; Dean, T.A. Detecting and Inferring Cause of Change in an Alaska Nearshore Marine Ecosystem. Ecosphere 2016, 7, e01489. [Google Scholar] [CrossRef]
- Menge, B.A.; Close, S.L.; Hacker, S.D.; Nielsen, K.J.; Chan, F. Biogeography of Macrophyte Productivity: Effects of Oceanic and Climatic Regimes across Spatiotemporal Scales. Limnol. Oceanogr. 2021, 66, 711–726. [Google Scholar] [CrossRef]
- Tarazona, J.; Espinoza, R.; Solís, M.; Arntz, W. Crecimiento y Producción Somática de La Concha de Abanico (Argopecten purpuratus) En Bahía Independencia, Pisco (Perú) Comparados Entre Eventos El Niño y La Niña. Rev. Biol. Mar. Oceanogr. 2007, 42, 275–285. [Google Scholar] [CrossRef]
- Konar, B.; Iken, K.; Cruz-Motta, J.J.; Benedetti-Cecchi, L.; Knowlton, A.; Pohle, G.; Miloslavich, P.; Edwards, M.; Kimani, E.; Riosmena-Rodriguez, R.; et al. Current Patterns of Macroalgal Diversity and Biomass in Northern Hemisphere Rocky Shores. PLoS ONE 2010, 5, e13195. [Google Scholar] [CrossRef] [PubMed]
- Moi, D.A.; García-Ríos, R.; Hong, Z.; Daquila, B.V.; Mormul, R.P. Intermediate Disturbance Hypothesis in Ecology: A Literature Review. Ann. Zool. Fenn. 2020, 57, 67–78. [Google Scholar] [CrossRef]
- Valqui, J.; Ibañez-Erquiaga, B.; Pacheco, A.S.; Wilbur, L.; Ochoa, D.; Cardich, J.; Pérez-Huaranga, M.; Salas-Gismondi, R.; Pérez, A.; Indacochea, A.; et al. Changes in Rocky Intertidal Communities after the 2015 and 2017 El Niño Events along the Peruvian Coast. Estuar. Coast. Shelf Sci. 2021, 250, 107142. [Google Scholar] [CrossRef]
- Ibanez-Erquiaga, B.; Pacheco, A.S.; Rivadeneira, M.M.; Tejada, C.L. Biogeographical Zonation of Rocky Intertidal Communities along the Coast of Peru (3.5-13.5 S Southeast Pacific). PLoS ONE 2018, 13, e0208244. [Google Scholar] [CrossRef]
- Kraan, C.; Aarts, G.; Piersma, T.; Dormann, C.F. Temporal Variability of Ecological Niches: A Study on Intertidal Macrobenthic Fauna. Oikos 2013, 122, 754–760. [Google Scholar] [CrossRef]
- Okuda, T.; Noda, T.; Yamamoto, T.; Ito, N.; Nakaoka, M. Latitudinal Gradient of Species Diversity: Multi-Scale Variability in Rocky Intertidal Sessile Assemblages along the Northwestern Pacific Coast. Popul. Ecol. 2004, 46, 159–170. [Google Scholar] [CrossRef]
- Thyrring, J.; Peck, L.S. Global Gradients in Intertidal Species Richness and Functional Groups. eLife 2021, 10, e64541. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, E. Large-Scale Species-Richness Gradients in the Atlantic Ocean. Proc. Biol. Sci. 2002, 269, 1715–1720. [Google Scholar] [CrossRef]
- Hillebrand, H. On the Generality of the Latitudinal Diversity Gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [PubMed]
- Lambshead, P.J.; Tietjen, J.; Ferrero, T.; Jensen, P. Latitudinal Diversity Gradients in the Deep Sea with Special Reference to North Atlantic Nematodes. Mar. Ecol. Prog. Ser. 2000, 194, 159–167. [Google Scholar] [CrossRef]
- Bridges, A.E.H.; Barnes, D.K.A.; Bell, J.B.; Ross, R.E.; Howell, K.L. Depth and Latitudinal Gradients of Diversity in Seamount Benthic Communities. J. Biogeogr. 2022, 49, 904–915. [Google Scholar] [CrossRef]
- Cruz-Motta, J.J.; Miloslavich, P.; Guerra-Castro, E.; Hernández-Agreda, A.; Herrera, C.; Barros, F.; Navarrete, S.A.; Sepúlveda, R.D.; Glasby, T.M.; Bigatti, G.; et al. Latitudinal Patterns of Species Diversity on South American Rocky Shores: Local Processes Lead to Contrasting Trends in Regional and Local Species Diversity. J. Biogeogr. 2020, 47, 1966–1979. [Google Scholar] [CrossRef]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Shaw, D.G.; Bader, H.R. Environmental Science in a Legal Context: The Exxon Valdez Experience. Ambio 1996, 25, 430–434. [Google Scholar]
- Ray, G.C.; Grassle, J.F. Marine Biological Diversity: A Scientific Program to Help Conserve Marine Biological Diversity Is Urgently Required. BioScience 1991, 41, 453–458. [Google Scholar] [CrossRef]
- Menegotto, A.; Rangel, T.F. Mapping Knowledge Gaps in Marine Diversity Reveals a Latitudinal Gradient of Missing Species Richness. Nat. Commun. 2018, 9, 4713. [Google Scholar] [CrossRef] [PubMed]
- Menge, B.A. Community Regulation: Under What Conditions Are Bottom-up Factors Important on Rocky Shores? Ecology 1992, 73, 755–765. [Google Scholar] [CrossRef]
- Menge, B.A.; Sutherland, J.P. Community Regulation: Variation in Disturbance, Competition, and Predation in Relation to Environmental Stress and Recruitment. Am. Nat. 1987, 130, 730–757. [Google Scholar] [CrossRef]
- Scrosati, R.; Heaven, C. Spatial Trends in Community Richness, Diversity, and Evenness across Rocky Intertidal Environmental Stress Gradients in Eastern Canada. Mar. Ecol. Prog. Ser. 2007, 342, 1–14. [Google Scholar] [CrossRef]
- Scrosati, R.; van Genne, B.; Heaven, C.S.; Watt, C.A. Species Richness and Diversity in Different Functional Groups across Environmental Stress Gradients: A Model for Marine Rocky Shores. Ecography 2011, 34, 151–161. [Google Scholar] [CrossRef]
- Miner, C.M.; Burnaford, J.L.; Ammann, K.; Becker, B.H.; Fradkin, S.C.; Ostermann-Kelm, S.; Smith, J.R.; Whitaker, S.G.; Raimondi, P.T. Latitudinal Variation in Long-Term Stability of North American Rocky Intertidal Communities. J. Anim. Ecol. 2021, 90, 2077–2093. [Google Scholar] [CrossRef] [PubMed]
- Claisse, J.T.; Blanchette, C.A.; Dugan, J.E.; Williams, J.P.; Freiwald, J.; Pondella II, D.J.; Schooler, N.K.; Hubbard, D.M.; Davis, K.; Zahn, L.A.; et al. Biogeographic Patterns of Communities across Diverse Marine Ecosystems in Southern California. Mar. Ecol. 2018, 39, e12453. [Google Scholar] [CrossRef]
- Blanchette, C.A.; Melissa Miner, C.; Raimondi, P.T.; Lohse, D.; Heady, K.E.K.; Broitman, B.R. Biogeographical Patterns of Rocky Intertidal Communities along the Pacific Coast of North America. J. Biogeogr. 2008, 35, 1593–1607. [Google Scholar] [CrossRef]
- Broitman, B.R.; Navarrete, S.A.; Smith, F.; Gaines, S.D. Geographic Variation of Southeastern Pacific Intertidal Communities. Mar. Ecol. Prog. Ser. 2001, 224, 21–34. [Google Scholar] [CrossRef]
- López-Rojas, V.I.; Flores-Garza, R.; García-Ibáñez, S.; Ruiz-Campos, G.; Flores-Rodríguez, P.; Violante-González, J.; Torreblanca-Ramírez, C. New Records of Bivalves in the Mexican Pacific Transitional Zone. Biodiversity 2020, 21, 150–164. [Google Scholar] [CrossRef]
- Ens, N.J.; Harvey, B.; Davies, M.M.; Thomson, H.M.; Meyers, K.J.; Yakimishyn, J.; Lee, L.C.; McCord, M.E.; Gerwing, T.G. The Green Wave: Reviewing the Environmental Impacts of the Invasive European Green Crab (Carcinus maenas) and Potential Management Approaches. Environ. Rev. 2022, 30, 306–322. [Google Scholar] [CrossRef]
- Hewson, I.; Button, J.B.; Gudenkauf, B.M.; Miner, B.; Newton, A.L.; Gaydos, J.K.; Wynne, J.; Groves, C.L.; Hendler, G.; Murray, M.; et al. Densovirus Associated with Sea-Star Wasting Disease and Mass Mortality. Proc. Natl. Acad. Sci. USA 2014, 111, 17278–17283. [Google Scholar] [CrossRef]
- Fukuyama, A.K.; Shigenaka, G.; Coats, D.A. Status of Intertidal Infaunal Communities Following the Exxon Valdez Oil Spill in Prince William Sound, Alaska. Mar. Pollut. Bull. 2014, 84, 56–69. [Google Scholar] [CrossRef]
- Driskell, W.; Fukyama, A.; Houghton, J.; Lees, D.; Shigenaka, G.; Mearns, A. Impacts on Intertidal Fauna: Exxon Valdez Oil Spill and Cleanup. Int. Oil Spill Conf. Proc. 1993, 1, 355–362. [Google Scholar] [CrossRef]
- Wolfe, D.; Krahn, M.; Casillas, E.; Scott, K., Jr.; Lunz, J.; Payne, J.; Thompson, T. Toxicity of Intertidal and Subtidal Sediments Contaminated by the Exxon Valdez Oil Spill. In American Fisheries Society Symposium; 1993; Available online: https://www.researchgate.net/publication/349537444_Toxicity_of_Intertidal_and_Subtidal_Sediments_Contaminated_by_the_Exxon_Valdez_Oil_Spill (accessed on 25 December 2023).
- Short, J.W.; Maselko, J.M.; Lindeberg, M.R.; Harris, P.M.; Rice, S.D. Vertical Distribution and Probability of Encountering Intertidal Exxon Valdez Oil on Shorelines of Three Embayments within Prince William Sound, Alaska. Environ. Sci. Technol. 2006, 40, 3723–3729. [Google Scholar] [CrossRef]
- Engle, J.M. Unified Monitoring Protocols for the Multi-Agency Rocky Intertidal Network; U.S. Department of the Interior Minerals Management Service Pacific OCS Region, Marine Science Institute, University of California: Santa Barbara, CA, USA, 2008; Volume 1. [Google Scholar]
- DeVogelaere, A.P.; Foster, M.S. Damage and Recovery in Intertidal Fucus Gardneri Assemblages Following the “Exxon Valdez” Oil Spill. Mar. Ecol. Prog. Ser. Oldendorf 1994, 106, 263–271. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.; Walker, B.; Scheffer, M.; Elmqvist, T.; Gunderson, L.; Holling, C.S. Regime Shifts, Resilience, and Biodiversity in Ecosystem Management. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 557–581. [Google Scholar] [CrossRef]
- Van Diggelen, A.D.; Worden, S.E.; Frimodig, A.J.; Wertz, S.P. California’s Lessons Learned and Recommendations for Effective Marine Protected Area Network Management. Mar. Policy 2022, 137, 104928. [Google Scholar] [CrossRef]
- Driskell, W.B.; Ruesink, J.L.; Lees, D.C.; Houghton, J.P.; Lindstrom, S.C. Long-Term Signal of Disturbance: Fucus gardneri after the Exxon Valdez Oil Spill. Ecol. Appl. 2001, 11, 815–827. [Google Scholar] [CrossRef]
- Colwell, R.K.; Chao, A.; Gotelli, N.J.; Lin, S.-Y.; Mao, C.X.; Chazdon, R.L.; Longino, J.T. Models and Estimators Linking Individual-Based and Sample-Based Rarefaction, Extrapolation and Comparison of Assemblages. J. Plant Ecol. 2012, 5, 3–21. [Google Scholar] [CrossRef]
- Chao, A.; Chazdon, R.L.; Colwell, R.K.; Shen, T.-J. A New Statistical Approach for Assessing Similarity of Species Composition with Incidence and Abundance Data: A New Statistical Approach for Assessing Similarity. Ecol. Lett. 2005, 8, 148–159. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and Extrapolation with Hill Numbers: A Framework for Sampling and Estimation in Species Diversity Studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Chao, A. Estimating the Population Size for Capture-Recapture Data with Unequal Catchability. Biometrics 1987, 43, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Steneck, R.S.; Watling, L. Feeding Capabilities and Limitation of Herbivorous molluscs: A Functional Group Approach. Mar. Biol. 1982, 68, 299–319. [Google Scholar] [CrossRef]
- Steneck, R.S.; Dethier, M.N. A Functional Group Approach to the Structure of Algal-Dominated Communities. Oikos 1994, 69, 476–498. [Google Scholar] [CrossRef]
- Steneck, R.S.; Vavrinec, J.; Leland, A.V. Accelerating Trophic-Level Dysfunction in Kelp Forest Ecosystems of the Western North Atlantic. Ecosystems 2004, 7, 323–332. [Google Scholar] [CrossRef]
- Bosman, A.L.; Hockey, P.A.R.; Siegfried, W.R. The Influence of Coastal Upwelling on the Functional Structure of Rocky Intertidal Communities. Oecologia 1987, 72, 226–232. [Google Scholar] [CrossRef]
- Castilla, J.C.; Paine, R.T. Predation and Community Organization on Eastern Pacific, Temperate Zone, Rocky Intertidal Shores. Rev. Chil. Hist. Nat. 1987, 60, 131–151. [Google Scholar]
- Ricotta, C.; Pavoine, S.; Bacaro, G.; Acosta, A.T.R. Functional Rarefaction for Species Abundance Data. Methods Ecol. Evol. 2012, 3, 519–525. [Google Scholar] [CrossRef]
- Saeedi, H.; Costello, M.J.; Warren, D.; Brandt, A. Latitudinal and Bathymetrical Species Richness Patterns in the NW Pacific and Adjacent Arctic Ocean. Sci. Rep. 2019, 9, 9303. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, C.; Saeedi, H.; Costello, M.J. Bimodality of Latitudinal Gradients in Marine Species Richness. Trends Ecol. Evol. 2016, 31, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Fenberg, P.; Menge, B.; Raimondi, P.; Rivadeneira, M. Biogeographic Structure of the Northeastern Pacific Rocky Intertidal: The Role of Upwelling and Dispersal to Drive Patterns. Ecography 2014, 38, 83–95. [Google Scholar] [CrossRef]
- Grace, J.B. The Factors Controlling Species Density in Herbaceous Plant Communities: An Assessment. Perspect. Plant Ecol. Evol. Syst. 1999, 2, 1–28. [Google Scholar] [CrossRef]
- Svensson, J.R.; Lindegarth, M.; Jonsson, P.R.; Pavia, H. Disturbance–Diversity Models: What Do They Really Predict and How Are They Tested? Proc. R. Soc. B Biol. Sci. 2012, 279, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.H. Measurement of Diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Colwell, R.K. EstimateS: Statistical Estimation of Species Richness and Shared Species from Samples, 2013. Available online: http://purl.oclc.org/estimates (accessed on 25 December 2023).
- Fisher, R.A.; Corbet, A.S.; Williams, C.B. The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. J. Anim. Ecol. 1943, 12, 42. [Google Scholar] [CrossRef]
- Hill, M.O. Diversity and Evenness: A Unifying Notation and Its Consequences. Ecology 1973, 54, 427–432. [Google Scholar] [CrossRef]
- Gotelli, N.; Colwell, R. Estimating Species Richness. In Frontiers in Measuring Biodiversity; Oxford University Press: Oxford, UK, 2011; Volume 12, pp. 39–54. Available online: https://www.researchgate.net/publication/236734446_Estimating_species_richness (accessed on 25 December 2023).
- Steneck, R.S. Herbivory on Coral Reefs: A Synthesis. In Proceedings of the 6th International Coral Reef Symposium, Townsville, Australia, 8–12 August 1988; Volume 1, pp. 37–49. [Google Scholar]
- Dawson, E.Y. A Review of the Ecology, Distribution, and Affinities of the Benthic Flora. Syst. Zool. 1960, 9, 93–100. [Google Scholar] [CrossRef]
- UC Santa Barbara, 1970; Santa Barbara Oil Pollution, 1969 Display: A Study of the Biological Effects of the Oil Spill Which Occurred at Santa Barbara, California in 1969 (No. 15080DZR 11/70); Water pollution control research series; U.S. Department of the Interior, Federal Water Quality Control Administration, University of California: Santa Barbara, CA, USA, 1970; p. 49. 53p.
- Wilbur, L.; Gkafas, G.; Saradopoulou, J.; Louca, V.; Exadactylos, A.; Küpper, F.C. Alaskan Fucus Beds as a Hitherto-Unconsidered Nursery Habitat for Herring. Under review 2024. [Google Scholar]
- Thornton, T.F.; Butler, V.; Funk, F.; Moss, M.; Hebert, J.; Elder, T. Herring Synthesis: Documenting and Modeling Herring Spawning Areas within Socio-Ecological Systems over Time in the Southeastern Gulf of Alaska; North Pacific Research Board: Anchorage, AK, USA, 2010; p. 591. [Google Scholar]
- Miner, C.M.; Burnaford, J.L.; Ambrose, R.F.; Antrim, L.; Bohlmann, H.; Blanchette, C.A.; Engle, J.M.; Fradkin, S.C.; Gaddam, R.; Harley, C.D.G.; et al. Large-Scale Impacts of Sea Star Wasting Disease (SSWD) on Intertidal Sea Stars and Implications for Recovery. PLoS ONE 2018, 13, e0192870. [Google Scholar] [CrossRef] [PubMed]
- Moreno, C.A.; Lunecke, K.M.; Lépez, M.I. The Response of an Intertidal Concholepas concholepas (Gastropoda) Population to Protection from Man in Southern Chile and the Effects on Benthic Sessile Assemblages. Oikos 1986, 46, 359–364. [Google Scholar] [CrossRef]
- Dethier, M.; Duggins, D. Variation in Strong Interactions in the Intertidal Zone along a Geographical Gradient: A Washington-Alaska Comparison. Mar. Ecol. Prog. Ser. 1988, 50, 97–105. [Google Scholar] [CrossRef]
- Mogollón, R.; Arellano, C.; Villegas, P.; Espinoza-Morriberón, D.; Tam, J. REPSOL Oil Spill off Central Perú in January 2022: A Modeling Case Study. Mar. Pollut. Bull. 2023, 194, 115282. [Google Scholar] [CrossRef] [PubMed]
- Marks-Dauenhauer, N.; Dauenhauer, R. Haa Shuká, Our Ancestors, 1st ed.; University of Washington Press: Washington, DC, USA, 1987; Volume 1. [Google Scholar]
- Edwards, K.; Lafferty, A.; Marks, J.; Pegues, J.; Sarabia, H.; Colley, B.; Katzeek, D.; White, F.; Leer, J. Dictionary of Tlingit; Sealaska Heritage Institute: Juneau, AK, USA, 2011. [Google Scholar]
- Chicoine, D.; Rojas, C. Shell Resources and Maritime Economy at Caylán, Coastal Ancash, Peru. J. Isl. Coast. Archaeol. 2013, 8, 336–360. [Google Scholar] [CrossRef]
- López de la Lama, R.; de la Puente, S.; Sueiro, J.C.; Chan, K.M.A. Reconnecting with the Past and Anticipating the Future: A Review of Fisheries-Derived Cultural Ecosystem Services in Pre-Hispanic Peru. People Nat. 2021, 3, 129–147. [Google Scholar] [CrossRef]
- Benson, E.P. The Worlds of the Moche on the North Coast of Peru; University of Texas Press: Austin, TX, USA, 2021; ISBN 978-0-292-73760-0. [Google Scholar]
- Weinberg, C.; Osborn, J.; Espino Huaman, R. Marine Shellfish Exploitation as a Means of Reducing Vulnerability to Resource Uncertainty in Southern Coastal Peru (200 BCE–150 CE). Holocene 2022, 32, 1503–1517. [Google Scholar] [CrossRef]
- Torres Silva, E.; Macalupú Rosado, J. Bancos naturales de Donax obesulus en el litoral de la Región Piura, Perú. In Natural Banks of Donax Obesulus in the Coast of the Piura Region, Peru. 2014. Available online: https://repositorio.imarpe.gob.pe/handle/20.500.12958/3156 (accessed on 25 December 2023).
- Pulido Capurro, V.; Arana Bustamante, C.; Olivera Carhuaz, E.; Riveros, J.C.; Pulido Capurro, V.; Arana Bustamante, C.; Olivera Carhuaz, E.; Riveros, J.C. El Derrame de Petróleo En El Terminal 2 de La Refinería La Pampilla y Sus Efectos En La Biodiversidad de Las Costas Del Litoral Marino, Perú. Arnaldoa 2022, 29, 71–88. [Google Scholar]
- Tasso, V.; Haddad, M.E.; Assadi, C.; Canales, R.; Aguirre, L.; Vélez-Zuazo, X. Macrobenthic Fauna from an Upwelling Coastal Area of Peru (Warm Temperate South-Eastern Pacific Province -Humboldtian Ecoregion). Biodivers. Data J. 2018, 6, e28937. [Google Scholar] [CrossRef]
- Lannoo, M. Leopold’s Shack and Ricketts’s Lab: The Emergence of Environmentalism; University of California Press: Oakland, CA, USA, 2010; ISBN 978-0-520-26478-6. [Google Scholar]
- Bustamente, R.H.; Branch, G.M.; Eekhout, S.; Robertson, B.; Zoutendyk, P.; Schleyer, M.; Dye, A.; Hanekom, N.; Jurd, M.; McQuaid, C.; et al. Gradients of Intertidal Primary Productivitiy around the Coast of South Africa and Their Relationships with Consumer Biomass. Oecologia 1994, 102, 189–201. [Google Scholar] [CrossRef]
- Lathlean, J.A.; McWilliam, R.A.; Ayre, D.J.; Minchinton, T.E. Biogeographical Patterns of Rocky Shore Community Structure in South-East Australia: Effects of Oceanographic Conditions and Heat Stress. J. Biogeogr. 2015, 42, 1538–1552. [Google Scholar] [CrossRef]
- Ishida, K.; Tachibana, M.; Yao, Y.; Wada, Y.; Noda, T. The Impact of Marine Heatwaves on Rocky Intertidal Communities: Evidence of Accumulative Carryover Effects of Marine Heatwaves. Front. Mar. Sci. 2023, 10, 1146148. [Google Scholar] [CrossRef]
- Konar, B.; Iken, K.; Edwards, M. Depth-Stratified Community Zonation Patterns on Gulf of Alaska Rocky Shores. Mar. Ecol. 2008, 30, 63–73. [Google Scholar] [CrossRef]
- Grout, J.A.; Levings, C.D. Effects of Acid Mine Drainage from an Abandoned Copper Mine, Britannia Mines, Howe Sound, British Columbia, Canada, on Transplanted Blue Mussels (Mytilus edulis). Mar. Environ. Res. 2001, 51, 265–288. [Google Scholar] [CrossRef] [PubMed]
- Helmuth, B.A. Intertidal Mussel Microclimates: Predicting the Body Temperature of a Sessile Invertebrate. Ecol. Monogr. 1998, 68, 51–74. [Google Scholar] [CrossRef]
- Helmuth, B.; Harley, C.D.G.; Halpin, P.M.; O’donnell, M.; Hofmann, G.E.; Blanchette, C.A. Climate Change and Latitudinal Patterns of Intertidal Thermal Stress. Science 2002, 298, 1015–1017. [Google Scholar] [CrossRef]
- Guiñez, R. Castilla A Tridimensional Self-Thinning Model for Multilayered Intertidal Mussels. Am. Soc. Nat. 1999, 154, 341–357. [Google Scholar]
- Elsberry, L.A.; Bracken, M.E.S. Functional Redundancy Buffers Mobile Invertebrates against the Loss of Foundation Species on Rocky Shores. Mar. Ecol. Prog. Ser. 2021, 673, 43–54. [Google Scholar] [CrossRef]
- Prado, L.; Castilla, J.C. The Bioengineer Perumytilus purpuratus (Mollusca: bivalvia) in Central Chile: Biodiversity, Habitat Structural Complexity and Environmental Heterogeneity. J. Mar. Biol. Assoc. UK 2006, 86, 417–421. [Google Scholar] [CrossRef]
- Tsuchiya, M.; Nishihira, M. Islands of Mytilus as a Habitat for Small Intertidal Animals: Effect of Island Size on Community Structure. Mar. Ecol. Prog. Ser. 1985, 25, 71–81. [Google Scholar] [CrossRef]
- Wilbur, L.; Küpper, F.C.; Louca, V. Algal Cover as a Driver of Diversity in Communities Associated with Mussel Assemblages across Eastern Pacific Ecoregions. Mar. Ecol. 2024, 18, e12785. [Google Scholar] [CrossRef]
- Hawkins, S.J.; Hartnoll, R.G. Factors Determining the Upper Limits of Intertidal Canopy Forming Algae. Mar. Ecol. Prog. Ser. 1985, 20, 265–271. [Google Scholar] [CrossRef]
- Alvarado, J.L.; Castilla, J.C. Tridimensional Matrices of Mussels Perumytilus purpuratus on Intertidal Platforms with Varying Wave Forces in Central Chile. Mar. Ecol. Prog. Ser. 1996, 133, 133–141. [Google Scholar] [CrossRef]
- Wijsman, J.W.M.; Troost, K.; Fang, J.; Roncarati, A. Global Production of Marine Bivalves. Trends and Challenges. In Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 7–26. ISBN 978-3-319-96776-9. [Google Scholar]
- Tsuchiya, M.; Nishihira, M. Islands of Mytilus Edulis as a Habitat for Small Intertidal Animals: Effect of Mytilus Age Structure on the Species Composition of the Associated Fauna and Community Organization. Mar. Ecol. Prog. Ser. 1986, 31, 171–178. [Google Scholar] [CrossRef]
- Wilbur, L.; Küpper, F.C.; Katsiaras, N.; Louca, V. Predicting Diversity in Benthic Macro-Scale Communities Associated with Mussel Matrices in Three Pacific Ecoregions. Mar. Ecol. 2023, 44, e12741. [Google Scholar] [CrossRef]
- Harley, C.G.D.; Helmuth, B. Local and Regional Scale Effects of Wave Exposure, Thermal Stress, and Absolute versus Effective Shore Level on Patterns of Intertidal Zonation. Limnol. Oceanogr. 2003, 48, 1498–1508. [Google Scholar] [CrossRef]
- Wilson, J.; Matejusova, I.; McIntosh, R.E.; Carboni, S.; Bekaert, M. New Diagnostic SNP Molecular Markers for the Mytilus Species Complex. PLoS ONE 2018, 13, e0200654. [Google Scholar] [CrossRef] [PubMed]
- Hilbish, T.J.; Carson, E.W.; Plante, J.R.; Weaver, L.A.; Gilg, M.R. Distribution of Mytilus edulis, M. Galloprovincialis, and Their Hybrids in Open-Coast Populations of Mussels in Southwestern England. Mar. Biol. 2002, 2002, 137–142. [Google Scholar] [CrossRef]
- Wenne, R.; Bach, L.; Zbawicka, M.; Strand, J.; McDonald, J.H. A First Report on Coexistence and Hybridization of Mytilus trossulus and M. Edulis Mussels in Greenland. Polar Biol. 2016, 39, 343–355. [Google Scholar] [CrossRef]
- Zuykov, M.; Anderson, J.; Archambault, P.; Dufresne, F.; Pelletier, E. Mytilus Trossulus and Hybrid (M. Edulis-M. Trossulus)—New Hosts Organisms for Pathogenic Microalgae Coccomyxa Sp. from the Estuary and Northwestern Gulf of St. Lawrence, Canada. J. Invertebr. Pathol. 2018, 153, 145–146. [Google Scholar] [CrossRef]
- Tsuchiya, M. Mass Mortality in a Population of the Mussel Mytilus edulis L. Caused by High Temperature on Rocky Shores. J. Exp. Mar. Biol. Ecol. 1983, 66, 101–111. [Google Scholar] [CrossRef]
- Fisheries, N. Tide to Table Profile: Alaska Shellfish Farms|NOAA Fisheries. Available online: https://www.fisheries.noaa.gov/feature-story/tide-table-profile-alaska-shellfish-farms (accessed on 25 December 2023).
- Buschbaum, C.; Dittmann, S.; Hong, J.-S.; Hwang, I.-S.; Strasser, M.; Thiel, M.; Valdivia, N.; Yoon, S.-P.; Reise, K. Mytilid Mussels: Global Habitat Engineers in Coastal Sediments. Helgol. Mar. Res. 2009, 63, 47–58. [Google Scholar] [CrossRef]
- Firstater, F.N.; Hildago, F.J.; Lomovasky, B.J.; Ramos, E.; Gamero, P.; Iribarne, O. Habitat Structure Is More Important than Nutrient Supply in Odifying Mussel Bed Assemblage in an Upwelling Area of the Peruvian Coast. Helgol. Mar. Res. 2010, 65, 187–196. [Google Scholar] [CrossRef]
- Anderson, M.J.; Tolimieri, N.; Millar, R.B. Beta Diversity of Demersal Fish Assemblages in the North-Eastern Pacific: Interactions of Latitude and Depth. PLoS ONE 2013, 8, e57918. [Google Scholar] [CrossRef] [PubMed]
- Free, C.M.; Anderson, S.C.; Hellmers, E.A.; Muhling, B.A.; Navarro, M.O.; Richerson, K.; Rogers, L.A.; Satterthwaite, W.H.; Thompson, A.R.; Burt, J.M.; et al. Impact of the 2014–2016 Marine Heatwave on US and Canada West Coast Fisheries: Surprises and Lessons from Key Case Studies. Fish Fish. 2023, 24, 652–674. [Google Scholar] [CrossRef]
- Alheit, J.; Niquen, M. Regime Shifts in the Humboldt Current Ecosystem. Prog. Oceanogr. 2004, 60, 201–222. [Google Scholar] [CrossRef]
- Carrasco, S.; Santander, H. The El Nino Event and Its Influence on the Zooplankton off Peru. J. Geophys. Res. 1987, 92, 14405–14410. [Google Scholar] [CrossRef]
- Lonhart, S.I.; Tupen, J.W. New Range Records of 12 Marine Invertebrates: The Role of El Nino and Other Mechanisms in Southern and Central California. Bull. South. Calif. Acad. Sci. 2001, 100, 238–249. [Google Scholar]
- Figueroa, J.; Guillermo-Hinojosa, E.; Álvarez, A.; Ipanaque, M.; Hernández, W.; Valdivia, L. Línea Base Biológica Terrestre y Marina de La Reserva Nacional Sistema de Islas, Islotes y Puntas Guaneras; Capítulo 1—Caracterización de La Fauna: Aves, Mamíferos y Reptiles; Islote Don Martín: Lima, Peru, 2019; pp. 9–111. [Google Scholar]
- Spiecker, B.J.; Menge, B.A. El Niño and Marine Heatwaves: Ecological Impacts on Oregon Rocky Intertidal Kelp Communities at Local to Regional Scales. Ecol. Monogr. 2022, 92, e1504. [Google Scholar] [CrossRef]
- Overland, J.E. Causes of the Record-Breaking Pacific Northwest Heatwave, Late June 2021. Atmosphere 2021, 12, 1434. [Google Scholar] [CrossRef]
- Traiger, S.B.; Bodkin, J.L.; Coletti, H.A.; Ballachey, B.; Dean, T.; Esler, D.; Iken, K.; Konar, B.; Lindeberg, M.R.; Monson, D.; et al. Evidence of Increased Mussel Abundance Related to the Pacific Marine Heatwave and Sea Star Wasting. Mar. Ecol. 2022, 43, e12715. [Google Scholar] [CrossRef]
- Di Lorenzo, E.; Mantua, N. Multi-Year Persistence of the 2014/15 North Pacific Marine Heatwave. Nat. Clim. Change 2016, 6, 1042–1047. [Google Scholar] [CrossRef]
- Welch, H.; Savoca, M.S.; Brodie, S.; Jacox, M.G.; Muhling, B.A.; Clay, T.A.; Cimino, M.A.; Benson, S.R.; Block, B.A.; Conners, M.G.; et al. Impacts of Marine Heatwaves on Top Predator Distributions Are Variable but Predictable. Nat. Commun. 2023, 14, 5188. [Google Scholar] [CrossRef] [PubMed]
- Wilbur, L.; Küpper, F.C.; Louca, V. An Assessment of Seasonal Upwelling with Emphasis on Intertidal Temperatures and Shifts in the Abundances of Taxa Associated with Mussel Assemblages at Reserva Punta San Juan (Part of the RNSIIPG Network in Peru) Following the Coastal El Niño of 2017. Manuscript in Preparation for Submission to Estuarine, Coastal and Shelf Science 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4744044 (accessed on 25 December 2023).
- Laufkötter, C.; Zscheischler, J.; Frölicher, T.L. High-Impact Marine Heatwaves Attributable to Human-Induced Global Warming. Science 2020, 369, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Stabeno, P.J.; Bond, N.A.; Hermann, A.J.; Kachel, N.B.; Mordy, C.W.; Overland, J.E. Meteorology and Oceanography of the Northern Gulf of Alaska. Cont. Shelf Res. 2004, 24, 859–897. [Google Scholar] [CrossRef]
- Qiu, B. Kuroshio and Oyashio Currents. In Encyclopedia of Ocean Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1413–1425. ISBN 978-0-12-227430-5. [Google Scholar]
- Kaufman, D.S.; Manley, W.F. Pleistocene Maximum and Late Wiscosinan Glacier Extenst across Alaska, USA. Available online: http://akatlas.geology.buffalo.edu/ (accessed on 22 May 2020).
- Larsen, C.F.; Motyka, R.J.; Freymueller, J.T.; Ivins, E.R. Rapid Viscoelastic Uplift in Southeast Alaska Caused by Post-Little Ice Age Glacial Retreat. Earth Planet. Sci. Lett. 2005, 237, 548–560. [Google Scholar] [CrossRef]
- Larsen, C.F.; Motyka, R.J.; Freymueller, J.T.; Echelmeyer, K.A.; Ivins, E.R. Rapid Uplift of Southern Alaska Caused by Recent Ice Loss. Geophys. J. Int. 2004, 158, 1118–1133. [Google Scholar] [CrossRef]
- Pye, K.; Tsoar, H. Aeolian Sand and Sand Dunes; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-85909-3. [Google Scholar]
- Zuta, S.; Guillén, O. Oceanografía de las aguas costeras del Perú. Bol. Inst. Mar Perú 1970, 2, 157–324. [Google Scholar]
- Silva, N.; Rojas, N.; Fedele, A. Water Masses in the Humboldt Current System: Properties, Distribution, and the Nitrate Deficit as a Chemical Water Mass Tracer for Equatorial Subsurface Water off Chile. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1004–1020. [Google Scholar] [CrossRef]
- Strub, P.T.; Mesías, J.M.; Montecino, V.; Rutlant, J.; Salinas, S. Coastal Ocean Circulation off Western South America. In The Sea; John Wiley and Sons: Hoboken, NJ, USA,, 1998; Volume 11, pp. 273–313. [Google Scholar]
- Wyrtki, K. Equatorial Currents in the Pacific 1950 to 1970 and Their Relations to the Trade Winds. J. Phys. Oceanogr. 1974, 4, 372–380. [Google Scholar] [CrossRef]
- Vermeij, G.J. Trans-Equatorial Connections between Biotas in the Temperate Eastern Atlantic. Mar. Biol. 1992, 112, 343–348. [Google Scholar] [CrossRef]
- Küpper, F.C.; Kamenos, N.A. The Future of Marine Biodiversity and Marine Ecosystem Functioning in UK Coastal and Trritorial Waters (Including UK Overseas Territories)—With an Emphasis on Marine Macrophyte Communities. Bot. Mar. 2018, 61, 521–535. [Google Scholar] [CrossRef]
- Camus, P.A. Biogeografía Marina de Chile Continental. Rev. Chil. Hist. Nat. 2001, 74, 587–617. [Google Scholar] [CrossRef]
Realm | Province | Ecoregion | Latitude |
---|---|---|---|
Temperate Northern Pacific | Cold Temperate Northeast Pacific | North American Pacific Fjordland | ~50° N–59° N |
Tropical Eastern Pacific | Tropical East Pacific | Guayaquil | ~0° S–5.95° S |
Temperate South Pacific | Warm Temperate Southeastern Pacific | Central Peru | ~5.95° S–12.14° S |
Temperate South America | Warm Temperate Southeastern Pacific | Humboldtian | ~12.14° S–25.11° S |
Ecoregion | Site | Decimal Coordinates |
---|---|---|
North American Pacific Fjordland (NAPF) | Pirates Cove plot 1 (PCO1) | 56.986, −135.3803 |
Pirates Cove plot 2 (PCOII) | 56.987, −135.3787 | |
Kayak Island (KIS) | 57.0227, −13541 | |
Whale Park (WPA) | 57.0326, −135.2496 | |
Kresta Point (KPO) | 57.14085, −135.50813 | |
Guayaquil (GUAY) | Playa Acapulco (ACA) | −3.71138, −80.77350 |
Punta Veleros (PVE) | −4.1775, −81.14277 | |
El Ñuro (ENU) | −4.21777, −81.1869 | |
Cabo Blanco (CBL) | −4.2501, −81.23222 | |
Humboldtian Wide-Shelf (HWS) | Playa León Dormido (LDO) | −12.63287, −76.6713 |
Playa Ensenada (PEN) | −12.64771, −76.6699 | |
Playa Farallones (PFA) | −12.74, −76.6311 | |
Playa Palmeras (PGA) | −12.96583, −76.51083 | |
Humboldtian Narrow-Shelf (HNS) | Punta San Juan N5n (PSJ) | −15.3625, −75.19138 |
PSJ N5s | −15.3633, −75.19166 | |
PSJ S5 | −15.3675, −75.1875 | |
Playa Siete Huecos 2b (P7H) | −15.3747, −75.17722 | |
Playa Siete Huecos 2a | −15.37444, −75.1777 | |
Universidad Antofagasta (UOA) | −23.70144, −70.42437 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilbur, L.; Louca, V.; Ibanez-Erquiaga, B.; Küpper, F.C. A Case for Trans-Regional Intertidal Research in Unstudied Areas in the Northeast and Southeast Pacific: Filling the Gaps. Coasts 2024, 4, 323-346. https://doi.org/10.3390/coasts4020017
Wilbur L, Louca V, Ibanez-Erquiaga B, Küpper FC. A Case for Trans-Regional Intertidal Research in Unstudied Areas in the Northeast and Southeast Pacific: Filling the Gaps. Coasts. 2024; 4(2):323-346. https://doi.org/10.3390/coasts4020017
Chicago/Turabian StyleWilbur, Lynn, Vasilis Louca, Bruno Ibanez-Erquiaga, and Frithjof C. Küpper. 2024. "A Case for Trans-Regional Intertidal Research in Unstudied Areas in the Northeast and Southeast Pacific: Filling the Gaps" Coasts 4, no. 2: 323-346. https://doi.org/10.3390/coasts4020017
APA StyleWilbur, L., Louca, V., Ibanez-Erquiaga, B., & Küpper, F. C. (2024). A Case for Trans-Regional Intertidal Research in Unstudied Areas in the Northeast and Southeast Pacific: Filling the Gaps. Coasts, 4(2), 323-346. https://doi.org/10.3390/coasts4020017