Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Evaluation of Antioxidant Activity (AI)
2.4. Mineral Element Content
2.5. Extraction of Fatty Acids (FAs)
2.6. Statistical Analysis
3. Results
3.1. Evaluation of Antioxidant Activity
3.1.1. Evaluation of Absorbance
3.1.2. Evaluation of Antioxidant Activity by FRAP Value
3.2. Minerals
3.3. Measurement of Fatty Acids
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robert, M. Encyclopedia of Food Chemistry, 1st, ed.; E-Book: USA, 2019; pp. 640–647. [Google Scholar]
- Martínez-González, M.Á.; Hershey, M.S.; Zazpe, I.; Trichopoulou, A. Transferability of the Mediterranean diet to non-Mediterranean countries. What is and what is not the Mediterranean diet. Nutrients 2017, 9, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esfahlan, A.J.; Jamei, R.; Esfahlan, R.J. The importance of almond (Prunus amygdalus L.) and its by-products. Food Chemist. 2010, 120, 349–360. [Google Scholar] [CrossRef]
- Ghasemynasabparizi, M.; Ahmadi, A.; Mazloomi, S.M. A review on pistachio: Its composition and benefits regarding the prevention or treatment of diseases. J. Occup. Health Epidemi. 2015, 4, 57–69. [Google Scholar] [CrossRef]
- Tey, L.S.; Brown, C.R.; Chisholm, W.A.; Delahunty, C.M.; Gray, R.A.; Williams, M.S. Effects of different forms of hazelnuts on blood lipids and α-tocopherol concentrations in mildly hypercholesterolemic individuals. Eur. J. Clin. Nutr. 2011, 65, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damasceno, N.R.T.; Pérez-Heras, A.; Serra, M.; Cofán, M.; Sala-Vila, A.; Salas-Salvadó, J.; Ros, E. Crossover study of diets enriched with virgin olive oil, walnuts, or almonds. Effects on lipids and other cardiovascular risk markers. Nutr. Metab. Cardiovasc. Dis. 2011, 21, S14–S20. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.; Gray, A.R.; Chua, M.G.; Ware, L.; Chisholm, A.; Tey, S.L. Is a Handful an Effective Way to Guide Nut Recommendations? Int. J. Environ. Res. Public Health 2021, 18, 7812. [Google Scholar] [CrossRef] [PubMed]
- Bielecka, J.; Puścion-Jakubik, A.; Markiewicz-Żukowska, R.; Soroczyńska, J.; Nowakowski, P.; Grabia, M.; Mielcarek, K.; Przebierowska, K.; Kotowska, K.; Socha, K. Assessment of the Safe Consumption of Nuts in Terms of the Content of Toxic Elements with Chemometric Analysis. Nutrients 2021, 13, 3606. [Google Scholar] [CrossRef]
- Lopes, A.; Matos, A.; Guiné, R. Evaluation of Morphological and Physical Characteristics of Hazelnut Varieties. Millenium-J. Educ. Technol. Health 2016, 2, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Guiné, P.F.; Correia, M.R. Hazelnut: A Valuable Resource. ETP Int. J. Food Eng. 2020, 6, 67–72. [Google Scholar] [CrossRef]
- Rezaei, F.; Bakhshi, D.; Ghazvini, F.R.; Majd, J.D.; Pourghayoumi, M. Evaluation of fatty acid content and nutritional properties of selected native and imported hazelnut (Corylus avellana L.) varieties grown in Iran. J. Appl. Bot. Food Qual. 2014, 87, 104–107. [Google Scholar] [CrossRef]
- Dobhal, K.; Singh, N.; Negi, A. A brief review on: Hazelnuts. Int. J. Recent Sci. Res. 2018, 9, 23680–23684. [Google Scholar]
- Köksala, A.I.; Artikb, N.; Şimşekc, A.; Güneş, N. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Müller, A.; Helms, U.; Rohrer, C.; Möhler, M.; Hellwig, F.; Glei, M.; Schwerdtle, T.; Lorkowski, S.; Dawczynski, C. Nutrient Composition of Different Hazelnut Cultivars Grown in Germany. Foods 2020, 9, 1596. [Google Scholar] [CrossRef]
- Pycia, K.; Kapusta, I.; Jaworska, G. Changes in Antioxidant Activity, Profile, and Content of Polyphenols and Tocopherols in Common Hazel Seed (Corylus avellana L.) Depending on Variety and Harvest Date. Molecules 2019, 25, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pelvan, E.; Olgun, E.Ö.; Karadağ, A.; Alasalvar, C. Phenolic profiles and antioxidant activity of Turkish Tombul hazelnut samples (natural, roasted, and roasted hazelnut skin). Food Chem. 2018, 244, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Perna, S.; Giacosa, A.; Bonitta, G.; Bologna, C.; Isu, A.; Guido, D.; Rondanelli, M. Effects of hazelnut consumption on blood lipids and body weight: A systematic review and Bayesian meta-analysis. Nutrients 2016, 8, 747. [Google Scholar] [CrossRef]
- Tunçil, Y.E. Dietary fibre profiles of Turkish Tombul hazelnut (Corylus avellana L.) and hazelnut skin. Food Chem. 2020, 316, 126338. [Google Scholar] [CrossRef]
- Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67. [Google Scholar] [CrossRef]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmen, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef]
- Barral-Martinez, M.; Fraga-Corral, M.; Garcia-Perez, P.; Simal-Gandara, J.; Prieto, M.A. Almond By-Products: Valorization for Sustainability and Competitiveness of the Industry. Foods 2021, 10, 1793. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Nabavi, S.M.; Sureda, A.; Rasekhian, M.; Raciti, R.; Silva, A.S.; Annunziata, G.; Arnone, A.; Tenore, G.C.; Süntar, I.; et al. Almonds (Prunus Dulcis Mill. D. A. Webb): A Source of Nutrients and Health-Promoting Compounds. Nutrients 2020, 12, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on the Substantiation of Health Claims Related to Almonds and Maintenance of Normal Blood LDL Cholesterol Concentrations (ID 1131) and Maintenance of Normal Erectile Function (ID 2482) Pursuant to Article 13 (1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2036. [Google Scholar]
- Roncero, J.M.; Álvarez-Ortí, M.; Pardo-Giménez, A.; Rabadán, A.; Pardo, J.E. Review about non-lipid components and minor fat-soluble bioactive compounds of almond kernel. Foods 2020, 9, 1646. [Google Scholar] [CrossRef] [PubMed]
- Čolić, S.D.; Fotirić Akšić, M.M.; Lazarević, K.B.; Zec, G.N.; Gašić, U.M.; Dabić Zagorac, D.C.; Natić, M.M. Fatty acid and phenolic profiles of almond grown in Serbia. Food Chem. 2017, 234, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, H.; Gilani, A.U.; Sultan, F.A.T.; Amin, F.; Arslan, J.; Ghani, S.; Masroor, M. Almond supplementation reduces serum uric acid in coronary artery disease patients: A randomized controlled trial. Nutr. J. 2015, 15, 77. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, S.; Connell, K.M.; Sabaté, J. Effect of almond-enriched high-monounsaturated fat diet on selected markers of inflammation: A randomized, controlled, crossover study. Br. J. Nutr. 2010, 103, 907–912. [Google Scholar] [CrossRef]
- Noguera-Artiaga, L.; García-Romo, J.S.; Rosas-Burgos, E.C.; Cinco-Moroyoqui, F.J.; Vidal-Quintanar, R.L.; Carbonell-Barrachina, A.A.; Burgos-Hernández, A. Antioxidant, Antimutagenic and Cytoprotective Properties of Hydrosos Pistachio Nuts. Molecules 2019, 24, 4362. [Google Scholar] [CrossRef] [Green Version]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef]
- Azadedel, S.; Hanachi, P.; Saboora, A. Antioxidant Activity and Phenolic Compound Profile of Pistachio Skins (Pistacia vera L., Cultivars Kallehghuchi and Ohadi). Hormozgan Med. J. 2020, 25, 180–186. [Google Scholar] [CrossRef]
- Peirovi-Minaee, R. Different applications of pistachio skin. Pist. Health J. 2021, 4, 1–6. [Google Scholar] [CrossRef]
- Sari, I.; Baltaci, Y.; Bagci, C.; Davutoglu, V.; Erel, O.; Celik, H.; Ozer, O.; Aksoy, N.; Aksoy, M. Effect of pistachio diet on lipid parameters, endothelial function, inflammation, and oxidative status: A prospective study. Nutrition 2010, 26, 399–404. [Google Scholar] [CrossRef] [PubMed]
- London, H.A.; Pawlak, R.; Colby, S.E.; Wall-Bassett, E.; Sira, N. The Impact of Pistachio Consumption on Blood Lipid Profile. Am. J. Lifestyle Med. 2013, 7, 274–277. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Laith, A.A.; Alkhuzai, J.; Freije, A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab. J. Chem. 2015, 12, 2365–2371. [Google Scholar] [CrossRef] [Green Version]
- Naozuka, J.; Carvalho Vieira, E.; Nascimento, A.N.; Oliveira, P.V. Elemental analysis of nuts and seeds by axially viewed ICP OES. Food Chem. 2011, 124, 1667–1672. [Google Scholar] [CrossRef]
- Hara, A.; Radin, N.S. Lipid extraction of tissues with a low-toxicity solvent. Anal. Biochem. 1978, 90, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Karatay, H.; Sahin, A.; Yilmaz, O.; Aslan, A. Major Fatty Acids Composition of 32 Almond (Prunus dulcis (Mill.) D. A. Webb.) Genotypes Distributed in East and Southeast of Anatolia. Turk. J. Biochem. 2014, 39, 307–316. [Google Scholar] [CrossRef]
- Blumberg, J.B.; Bolling, B.W.; McKay, D.L. The phytochemical composition and antioxidant actions of tree nuts. Asia Pac. J. Clin. Nutr. 2010, 19, 117–123. [Google Scholar]
- Pellegrini, N.; Serafini, M.; Salvatore, S.; Del Rio, D.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of spices, dried fruits, nuts, pulses, cereals, and sweets consumed in Italy assessed by three different in vitro assays. Mol. Nutr. Food Res. 2006, 50, 1030–1038. [Google Scholar] [CrossRef]
- Tošić, S.; Mitić, S.S.; Velimirović, D.S.; Stojanović, G.S.; Pavlović, A.N.; Pecev-Marinković, E.T. Elemental composition of edible nuts: Fast optimization and validation procedure of an ICP-OES method. J. Sci. Food Agric. 2014, 95, 2271–2278. [Google Scholar] [CrossRef] [PubMed]
- Kırbaslar, F.G.; Türker, G.; Özsoy-Günes, Z.; Ünal, M.; Dülger, B.; Ertas, E.; Kızılkaya, B. Evaluation of Fatty Acid Composition, Antioxidant and Antimicrobial Activity, Mineral Composition and Calorie Values of Some Nuts and Seeds from Turkey. Acad. Chem. Globe Publ. 2012, 6, 339–349. [Google Scholar]
- Innis, S.M. Palmitic Acid in Early Human Development. Crit. Rev. Food Sci. Nutr. 2015, 56, 1952–1959. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, K.; Shen, C.; Shiraishi, I.; Inamura, N.; Hisatsune, T. Consumption of Oleic Acid on the Preservation of Cognitive Functions in Japanese Elderly Individuals. Nutrients 2021, 13, 284. [Google Scholar] [CrossRef]
Type | Time (min) | Antioxidants Absorbance Mean (Au) (±SE) * | Mean FRAP Value (µM/100 g) (±SE) |
---|---|---|---|
Almond seed | 0 | 0.58 (0.248) | 23.83 (12.54) |
6 | 0.63 (0.248) | ||
Total | 0.61 (0.030) | ||
Almond skin | 0 | 0.20 (0.001) | 80.17 (12.54) |
6 | 0.36 (0.002) | ||
Total | 0.28 (0.300) | ||
Hazelnut seed | 0 | 0.19 (0.005) | 49.17 (12.54) |
6 | 0.28 (0.008) | ||
Total | 0.23 (0.001) | ||
Hazelnut skin | 0 | 0.52 (0.007) | 610.50 (12.54) |
6 | 1.75 (0.053) | ||
Total | 1.13 (0.016) | ||
Pistachio seed | 0 | 0.36 (0.044) | 49.50 (12.54) |
6 | 0.45 (0.046) | ||
Total | 0.41 (0.030) | ||
Pistachio skin | 0 | 0.67 (0.030) | 415.50 (12.54) |
6 | 1.50 (0.034) | ||
Total | 1.09 (0.001) | ||
Total | 0 | 0.42 (0.057) | |
6 | 0.83 (0.144) | ||
Total | 0.62 (0.030) |
Mineral | Almond Seed Mean (±SE) (mg/L) | Almond Skin Mean (±SE) (mg/L) | Hazelnut Seed Mean (±SE) (mg/L) | Hazelnut Skin Mean (±SE) (mg/L) | Pistachio Seed Mean (±SE) (mg/L) | Pistachio Skin Mean (±SE) (mg/L) |
---|---|---|---|---|---|---|
Mn | 0.44 (0.00) | 2.08 (0.02) | 1.64 (0.02) | 1.48 (0.05) | 0.02 (0.01) | 0.34 (0.00) |
Cu | 0.18 (0.08) | 0.16 (0.02) | 0.90 (0.38) | 0.30 (0.03) | 0.02 (0.01) | 1.76 (0.01) |
Zn | 1.72 (0.02) | 2.96 (0.05) | 1.98 (0.21) | 2.08 (0.21) | 1.80 (0.10) | 1.86 (0.10) |
Se | 0.46 (0.01) | 0.46 (0.02) | 0.52 (0.01) | 0.40 (0.01) | 0.50 (0.00) | 1.02 (0.24) |
Fe | 0.56 (0.02) | 3.72 (0.08) | 0.76 (0.13) | 3.06 (0.16) | 0.42 (0.05) | 1.24 (0.03) |
Sample | Palmitic Acid, 16:0 | Palmitoleic Acid, 16:1 | Stearic Acid, 18:0 | Oleic Acid, 18:1 | Linoleic Acid, 18:2 | α-Linolenic Acid, 18:3 |
---|---|---|---|---|---|---|
Mean (±SE) (%) | Mean (±SE) | Mean (±SE) | Mean (±SE) | Mean (±SE) | Mean (±SE) | |
Almond seed | 7.58 (0.57) | 0.60 (0.06) | 0.96(0.12) | 62.04 (5.42) | 26.52 (3.14) | 1.12 (1.93) |
Almond skin | 8.36 (0.89) | 1.11 (0.58) | 1.37 (0.12) | 43.08 (1.30) | 36.98 (1.51) | 5.65 (2.79) |
Hazelnut seed | 5.38 (0.63) | 0.26 (0.01) | 1.04 (0.20) | 67.99 (3.26) | 21.00 (0.89) | 2.09 (1.54) |
Hazelnut skin | 6.02 (1.12) | 0.00 (0.00) | 1.41 (0.20) | 76.53 (0.44) | 14.89 (1.34) | 0.00 (0.00) |
Pistachio seed | 13.12 (5.31) | 0.80 (0.09) | 0.88 (0.07) | 48.20 (2.36) | 34.12 (1.79) | 4.28 (1.63) |
Pistachio skin | 8.94 (1.07) | 1.45 (0.39) | 1.44 (0.05) | 44.42 (0.12) | 34.04 (0.87) | 5.87 (0.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, D.; Freije, A.; Abdulhussain, H.; Khonji, A.; Hasan, M.; Ferraris, C.; Gasparri, C.; Aziz Aljar, M.A.; Ali Redha, A.; Giacosa, A.; et al. Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis. AppliedChem 2023, 3, 110-118. https://doi.org/10.3390/appliedchem3010008
Mohammed D, Freije A, Abdulhussain H, Khonji A, Hasan M, Ferraris C, Gasparri C, Aziz Aljar MA, Ali Redha A, Giacosa A, et al. Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis. AppliedChem. 2023; 3(1):110-118. https://doi.org/10.3390/appliedchem3010008
Chicago/Turabian StyleMohammed, Duha, Afnan Freije, Hawra Abdulhussain, Aysha Khonji, Mariam Hasan, Cinzia Ferraris, Clara Gasparri, Mona A. Aziz Aljar, Ali Ali Redha, Attilio Giacosa, and et al. 2023. "Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis" AppliedChem 3, no. 1: 110-118. https://doi.org/10.3390/appliedchem3010008
APA StyleMohammed, D., Freije, A., Abdulhussain, H., Khonji, A., Hasan, M., Ferraris, C., Gasparri, C., Aziz Aljar, M. A., Ali Redha, A., Giacosa, A., Rondanelli, M., & Perna, S. (2023). Analysis of the Antioxidant Activity, Lipid Profile, and Minerals of the Skin and Seed of Hazelnuts (Corylus avellana L.), Pistachios (Pistacia vera) and Almonds (Prunus dulcis)—A Comparative Analysis. AppliedChem, 3(1), 110-118. https://doi.org/10.3390/appliedchem3010008