Previous Issue
Volume 5, June
 
 

Ruminants, Volume 5, Issue 3 (September 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 869 KiB  
Review
Factors Influencing the Setting of Automatic Teat Cup Removal at the End of Machine Milking in Dairy Cows—An Overview
by Shehadeh Kaskous
Ruminants 2025, 5(3), 30; https://doi.org/10.3390/ruminants5030030 - 1 Jul 2025
Viewed by 155
Abstract
Overmilking occurs when the teat cups remain attached to the udder during milking, even though there is little or no milk flow. This puts pressure on the teat tissue and reduces milk production due to longer milking times, meaning fewer cows are milked [...] Read more.
Overmilking occurs when the teat cups remain attached to the udder during milking, even though there is little or no milk flow. This puts pressure on the teat tissue and reduces milk production due to longer milking times, meaning fewer cows are milked per hour. Therefore, the correct removal of the teat cup at the end of mechanical milking is crucial for the milking process. The aim of this study was to describe the factors influencing automatic teat cup removal (ATCR) at the end of mechanical milking and to demonstrate its importance for udder health, milk production and milk quality. There are considerable differences between milking system suppliers and countries regarding the minimum removal of the teat cup at the end of the milking process. However, to ensure good milk quality, prevent teat damage and reduce the risk of mastitis, it is important to shorten the working time of the milking machine on the udder in both automatic and conventional milking systems. For this reason, several studies have shown that increasing the milk flow switch point effectively reduces milking time, especially in automatic milking systems where dairy cows are milked more than twice a day. However, when the ATCR setting was increased above 0.5 kg·min−1, milk production decreased, and the number of somatic cells in the milk produced increased. Therefore, the use of ATCR at a milk flow rate of 0.2 kg·min−1 significantly increased milk production, improved milk quality and maintained udder health when a low vacuum level (34–36 kPa) was used in milking machines such as MultiLactor and StimuLactor (Siliconform, Germany). In conclusion, ATCR at a milk flow of 0.2–0.3 kg·min−1 is a useful level to achieve various goals on dairy farms when a low vacuum of 34–36 is used in the milking machine. If the milking machine uses a higher vacuum, it is possible to program a higher ATCR at a milk flow of up to 0.5 kg·min−1. Full article
Show Figures

Figure 1

24 pages, 348 KiB  
Review
Knowledge Gaps in the Nutrient Requirements of Beef Cattle
by Michael L. Galyean, Karen A. Beauchemin, Joel S. Caton, N. Andy Cole, Joan H. Eisemann, Terry E. Engle, Galen E. Erickson, Clint R. Krehbiel, Ronald P. Lemenager and Luis O. Tedeschi
Ruminants 2025, 5(3), 29; https://doi.org/10.3390/ruminants5030029 - 29 Jun 2025
Viewed by 311
Abstract
The 8th revised edition of the Nutrient Requirements of Beef Cattle was released in 2016, with the recommendations provided in the publication being used extensively in both research and production settings. In the context of research needs identified in that publication, our objective [...] Read more.
The 8th revised edition of the Nutrient Requirements of Beef Cattle was released in 2016, with the recommendations provided in the publication being used extensively in both research and production settings. In the context of research needs identified in that publication, our objective was to review research on beef cattle nutrient requirements published since 2016 and identify knowledge gaps that should be addressed. Relative to energy requirements, the effects of environmental temperature and grazing activity, along with stress and disease, on maintenance requirements are inadequately characterized or defined. In addition, relationships between retained energy and protein should be more fully elucidated, and additional guidance on body weight at a target compositional endpoint is needed. Areas of continuing concern include accurately and precisely predicting microbial protein supply, predicting N recycling, and the metabolizable protein requirements for maintenance. Mineral and vitamin requirements are often challenging because of a lack of consistency in models used to determine requirements and potential effects of unique production settings on requirements. Based on recent research with feedlot cattle, zinc and chromium requirements should be examined more closely. Because predictions of dry matter intake are critical to supplying nutrients, additional development of prediction equations is needed, especially for beef cows and grazing beef cattle in general. Given considerable research in prediction of greenhouse gases, reevaluation of 2016 recommendations is warranted, along with a need for the updating of equations to predict excretions of N and P. Composition of feeds, particularly byproducts from ethanol production or other industrial streams, represents a knowledge gap, with obtaining reliable energy values of these feeds being a notable challenge. Nutritional models provide the means to integrate nutrient requirement recommendations into practice, and moving towards mechanistic models that take advantage of artificial intelligence and precision livestock farming technologies will be critical to developing future modeling systems. Full article
13 pages, 567 KiB  
Article
An Observational Study of the Microbiological Quality of Bovine Colostrum Fed to Calves on Three Dairy Farms
by Flávio G. Silva, Marta Laranjo, Severiano R. Silva, Cristina Conceição and Joaquim L. Cerqueira
Ruminants 2025, 5(3), 28; https://doi.org/10.3390/ruminants5030028 - 22 Jun 2025
Viewed by 202
Abstract
This study aimed to evaluate the microbiological quality of colostrum on three dairy farms with different colostrum management hygiene practices and to compare it with the current colostrum quality guidelines. On farm A, colostrum was fed raw, while on farms B and C [...] Read more.
This study aimed to evaluate the microbiological quality of colostrum on three dairy farms with different colostrum management hygiene practices and to compare it with the current colostrum quality guidelines. On farm A, colostrum was fed raw, while on farms B and C it was heat treated. On farms A and B, the feeding equipment was cleaned manually, while on farm C, an automated cleaning system was used. Samples were collected from the calf-feeding equipment and submitted for microbial culture: total plate count (TPC); total coliform count (TCC); and E. coli, enterobacteria (ENTB), staphylococci (STAP), and lactic acid bacteria counts. In addition, pH, water activity (aW), and Brix were analyzed. Colostrum quality was defined as follows: good quality (GQ)—TPC < 100,000, TCC < 10,000, STAP < 50,000 cfu/mL, and Brix ≥ 22%; excellent quality (EQ)—TPC < 20,000, TCC < 100, STAP < 5000 cfu/mL, and Brix ≥ 25%. Mean concentrations were as follows: TPC was 3.99 × 105 cfu/mL (min: 40.00, max: 1.32 × 107 cfu/mL); TCC was 1.17 × 104 cfu/mL (min: <detection limit, max: 6.37 × 105 cfu/mL); and STAP was 1.77 × 104 cfu/mL (min: <detection limit, max: 3.50 × 105 cfu/mL). Approximately 54% (GQ) and 32% (EQ) of samples met the defined criteria. Farm C consistently showed lower microbial counts across all culture types. Colostrum from farm B had lower TCC, LAB, and E. coli counts than farm A but not TPC, STAP, and ENTB. These results showed that a considerable proportion of calves were fed colostrum with suboptimal quality, especially when less rigorous hygiene practices were implemented. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop