Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- I—Linear effect of sugarcane bagasse level;
- II—Quadratic effect of sugarcane bagasse level;
- III—Cubic effect of sugarcane bagasse level.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | Acid detergent fiber |
CEL | Cellulose |
CGP | Cumulative gas production |
CP | Crude protein |
DM | Dry matter |
EE | Ether extract |
HEM | Hemicellulose |
IVDDM | In vitro degradability of dry matter |
IVDOM | In vitro degradability of organic matter |
LIG | Lignin |
NDF | Neutral detergent fiber |
NFCs | Non-fiber carbohydrates |
NPN | Non-protein nitrogen |
OM | Organic matter |
TCs | Total carbohydrates |
TDNs | Total digestible nutrients |
VFA | Volatile fatty acid |
References
- Parsad, R.; Ahlawat, S.; Bagiyal, M.; Arora, R.; Gera, R.; Chhabra, P.; Sharma, U.; Singh, A. Climate Resilience in Goats: A Comprehensive Review of the Genetic Basis for Adaptation to Varied Climatic Conditions. Mamm. Genome 2025, 36, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Torres-Navarrete, E.D.; Sánchez-Laiño, A.R.; Verdecia-Acosta, D.M.; Ribera, J.L.; Hernández-Montiel, L.G.; Curaqueo-Fuente, G.; Zambrano-Montes, S.A. Pasture Potentialities in Family Farming Production Systems in Los Ríos Province, Ecuador, during the Summer. Enfoque UTE 2023, 14, 27–35. [Google Scholar] [CrossRef]
- Sintayehu, D.W.; Alemayehu, S.; Terefe, T.; Tegegne, G.; Engdaw, M.M.; Gebre, L.; Tesfaye, L.; Doyo, J.; Reddy, R.U.; Girvetz, E. Effects of Drought on Livestock Production, Market Dynamics, and Pastoralists’ Adaptation Strategies in Semi-Arid Ethiopia. Climate 2025, 13, 65. [Google Scholar] [CrossRef]
- Abd-Allah, S.; Abd-El Rahman, H.H.; Mohamed, M.I.; Abedo, A.A.; Salman, F.M.; Shoukry, M. Feeding Management of Small Ruminants as A Strategic Tool to Mitigate The Negative Impact of Climate Changes in Arid Regions of Egypt: A Case Study of Assaf Sheep. Egypt. J. Vet. Sci. 2024, 55, 531–542. [Google Scholar] [CrossRef]
- Hayat, M.K.; Mumtaz, M.M.; Ahsan Ali, M.; Huaira, A.; Ur Rehman, M.N.; Shabbir, M.A.; Usman, M.; Afzal, A. Optimizing Livestock Feed Systems: A Multi-Faceted Approach for Sustainable and Resilient Animal Agriculture; A Comprehensive Review. J. Plant Biota 2024, 3, 27–33. [Google Scholar] [CrossRef]
- Iglesias, A.; Mata, F.; Cerqueira, J.L.; Kowalczyk, A.; Cantalapiedra, J.; Ferreiro, J.; Araújo, J. Analysis of Growth Models in Galician × Nelore Crossbred Cattle in the First Year of Life. Animals 2024, 14, 3698. [Google Scholar] [CrossRef]
- Cordeiro, M.W.S.; Júnior, V.R.R.; Monção, F.P.; Palma, M.N.N.; Rigueira, J.P.S.; da Cunha Siqueira Carvalho, C.; da Costa, M.D.; D’Angelo, M.F.S.V.; Costa, N.M.; de Oliveira, L.I.S. Tropical Grass Silages with Spineless Cactus in Diets of Holstein × Zebu Heifers in the Semiarid Region of Brazil. Trop. Anim. Health Prod. 2023, 55, 89. [Google Scholar] [CrossRef]
- Dubeux, J.C.B.; dos Santos, M.V.F.; da Cunha, M.V.; dos Santos, D.C.; de Souza, R.T.A.; de Mello, A.C.L.; de Souza, T.C. Cactus (Opuntia and Nopalea) Nutritive Value: A Review. Anim. Feed. Sci. Technol. 2021, 275, 114890. [Google Scholar] [CrossRef]
- Saldanha, R.B.; de Carvalho, G.G.P.; Rodrigues, C.S.; Silva, T.V.B.S.; dos Pina, D.S.; Alba, H.D.R.; Santos, S.A.; Tosto, M.S.L.; Romão, C.d.O. The Inclusion of Pigeon Pea Hay Improves the Quality of Giant Cactus Harvested at Different Times. Agronomy 2024, 14, 1039. [Google Scholar] [CrossRef]
- Garcia Rodriguez, V.; Vandestroet, L.; Abeysekara, V.C.; Ominski, K.; Bumunang, E.W.; McAllister, T.; Terry, S.; Miranda-Romero, L.A.; Stanford, K. Optimizing Silage Strategies for Sustainable Livestock Feed: Preserving Retail Food Waste. Agriculture 2024, 14, 122. [Google Scholar] [CrossRef]
- Godoi, P.F.A.; Magalhães, A.L.R.; de Araújo, G.G.L.; de Melo, A.A.S.; Silva, T.S.; Gois, G.C.; dos Santos, K.C.; do Nascimento, D.B.; da Silva, P.B.; de Oliveira, J.S.; et al. Chemical Properties, Ruminal Fermentation, Gas Production and Digestibility of Silages Composed of Spineless Cactus and Tropical Forage Plants for Sheep Feeding. Animals 2024, 14, 552. [Google Scholar] [CrossRef]
- Panneerselvam, S.; Palanisamy, V.; Balasubramaniam, M.; Palanisamy, S.; Jaganathan, M.; Kannan, T.A. Effect of Nonstructural Carbohydrates on Production Performance, Rumen Metabolism and Rumen Health in Lambs Fed with Isocaloric and Isonitrogenous Complete Diets. Trop. Anim. Health Prod. 2024, 56, 181. [Google Scholar] [CrossRef]
- Tanuwiria, U.H.; Mushawwir, A.; Yulistina, A.; Ali, N. Effect of Rumen-Degradable Protein (RDP) To Non-Fiber Carbohydrate (NFC) Ratio in Cattle Feed on NH3 Production, Volatile Fatty Acids (VFA), and Protozoal Populations: An in Vitro Study. Adv. Anim. Vet. Sci. 2025, 13, 601–607. [Google Scholar] [CrossRef]
- Moraïs, S.; Mizrahi, I. Islands in the Stream: From Individual to Communal Fiber Degradation in the Rumen Ecosystem. FEMS Microbiol. Rev. 2019, 43, 362–369. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Zebeli, Q. A Review on the Potentials of Using Feeds Rich in Water-soluble Carbohydrates to Enhance Rumen Health and Sustainability of Dairy Cattle Production. J. Sci. Food Agric. 2021, 101, 5737–5746. [Google Scholar] [CrossRef]
- Marín-García, P.J.; Llobat, L.; López-Lujan, M.C.; Cambra-López, M.; Blas, E.; Pascual, J.J. Urea Nitrogen Metabolite Can Contribute to Implementing the Ideal Protein Concept in Monogastric Animals. Animals 2022, 12, 2344. [Google Scholar] [CrossRef]
- Zurak, D.; Kljak, K.; Aladrović, J. Metabolism and Utilisation of Non-Protein Nitrogen Compounds in Ruminants: A Review. J. Cent. Eur. Agric. 2023, 24, 1–14. [Google Scholar] [CrossRef]
- de Lima, I.E.; Monteiro, C.C.; Mesquita, F.T.L.; de Vasconcelos, E.Q.L.; de Souza, M.S.; dos Santos, D.S.; Ribeiro, E.F.; Santos, T.V.M.; Félix, S.B.; Herrera, A.M.; et al. Cactus Cladodes for Dairy Goats: What Is the Best Fiber Source? Trop. Anim. Health Prod. 2023, 55, 347. [Google Scholar] [CrossRef]
- da Silva, C.S.; da Gama, M.A.S.; Silva, E.A.M.; Ribeiro, E.F.; Felix, S.B.; Monteiro, C.C.F.; Mora-Luna, R.E.; de Oliveira, J.C.V.; dos Santos, D.C.; de Ferreira, M.A. Full-Fat Corn Germ Improves the Performance and Milk Fat Yield of Girolando Cows Fed Sugarcane Bagasse and Cactus Cladodes as Forage Sources. Trop. Anim. Health Prod. 2024, 56, 104. [Google Scholar] [CrossRef]
- Siqueira, M.; Chagas, J.; Monnerat, J.P.; Monteiro, C.; Mora-Luna, R.; Dubeux, J.; Dilorenzo, N.; Ruiz-Moreno, M.; Ferreira, M. Nutritive Value, In Vitro Fermentation, and Methane Production of Cactus Cladodes, Sugarcane Bagasse, and Urea. Animals 2021, 11, 1266. [Google Scholar] [CrossRef]
- Siqueira, T.D.Q.; dos Santos Monnerat, J.P.I.; Chagas, J.C.C.; da Conceição, M.G.; de Siqueira, M.C.B.; Viana, T.B.L.; de Andrade Ferreira, M. Cactus Cladodes Associated with Urea and Sugarcane Bagasse: An Alternative to Conserved Feed in Semi-Arid Regions. Trop. Anim. Health Prod. 2019, 51, 1975–1980. [Google Scholar] [CrossRef]
- Medeiros, I.P.S.; Guido, S.I.; Gama, M.A.S.; Silva, C.H.M.; Siqueira, M.C.B.; Silva, C.S.D.; Netto, A.J.; Felix, S.B.; Rabelo, M.N.; Santos, T.V.M. Cactus Cladodes and Sugarcane Bagasse Can Partially Replace Earless Corn Silage in Diets of Lactating Dairy Cows. Dairy 2023, 5, 33–43. [Google Scholar] [CrossRef]
- do Sacramento Ribeiro, J.; Santos, L.L.; de Lima Júnior, D.M.; de Albuquerque Mariz, T.M.; Ladeira, M.M.; de Azevedo, P.S.; Lima, C.B.; dos Santos Silva, M.J.M. Spineless Cactus Associated with Tifton Hay or Sugarcane Bagasse May Replace Corn Silage in Sheep Diets. Trop. Anim. Health Prod. 2017, 49, 995–1000. [Google Scholar] [CrossRef]
- dos Santos Neto, C.F.; da Silva, R.G.; Maranhão, S.R.; Barreto, C.M.; Lopes, M.N.; Cândido, M.J.D. Morphological Characteristics and Yield of Opuntia Stricta and Nopalea Cochenillifera in Integrated Crop Systems with Caatinga Trees. Agrofor. Syst. 2023, 97, 59–68. [Google Scholar] [CrossRef]
- Catarina, J.; Chagas, C.; Shan, A.; Pastorelli, G.; Serra, V.; Vannuccini, C.; Attard, E. Opuntia Spp. as Alternative Fodder for Sustainable Livestock Production. Animals 2022, 12, 1597. [Google Scholar] [CrossRef]
- Meissner, H.H.; Köster, H.H.; Nieuwoudt, S.H.; Coertze, R.J. Effect of Energy Supplementation on Intake and Digestion of Early and Mid-Season Ryegrass and Panicum/Smuts Finger Hay, and on in Sacco Disappearance of Various Forage Species. S Afr. J. Anim. Sci. 1991, 21, 33–42. [Google Scholar]
- International AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 1997. [Google Scholar]
- Detmann, E.; de Souza, M.; de Filho, S.C.V.; de Queiroz, A.; Berchielli, T.; de Saliba, E.O.; da Cabral, L.S.; dos Pina, D.S.; Ladeira, M.; Azevedo, J. Métodos Para Análise de Alimentos; Suprema: Visconde do Rio Branco, Brazil, 2012. [Google Scholar]
- Van Soest, P.J. Use of Detergents in the Analysis of Fibrous Feeds. 2. A Rapid Method for the Determination of Fiber and Lignin. J. Assoc. Off. Agric. Chem. 1963, 46, 829–835. [Google Scholar]
- Van Soest, P.J.; Wine, R.H. Use of Detergents in the Analysis of Fibrous Feeds. IV. Determination of Plant Cell-Wall Constituents. J. Assoc. Off. Anal. Chem. 1967, 50, 50–55. [Google Scholar]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A Net Carbohydrate and Protein System for Evaluating Cattle Diets: IV. Predicting Amino Acid Adequacy. J. Anim. Sci. 1992, 71, 1298–1311. [Google Scholar] [CrossRef]
- Weiss, W.P.; Conrad, H.R.; St. Pierre, N.R. A Theoretically-Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed. Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Maurício, R.M.; Pereira, L.G.R.; Gonçalves, L.C.; Rodriguez, N.M. Relationship between Volume and Pressure for Installation of the Semi-Automated in Vitro Gas Production Technique for Tropical Forage Evaluation. Arq. Bras. Med. Vet. Zootec. 2003, 55, 216–219. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A Simple Gas Production Method Using a Pressure Transducer to Determine the Fermentation Kinetics of Ruminant Feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Ammar, H.; Kholif, A.E.; Soltan, Y.A.; Almadani, M.I.; Soufan, W.; Morsy, A.S.; Ouerghemmi, S.; Chahine, M.; de Haro Marti, M.E.; Hassan, S.; et al. Nutritive Value of Ajuga Iva as a Pastoral Plant for Ruminants: Plant Phytochemicals and In Vitro Gas Production and Digestibility. Agriculture 2022, 12, 1199. [Google Scholar] [CrossRef]
- Pereira, E.S.; Pimentel, P.G.; Duarte, L.S.; Mizubuti, I.Y.; de Araújo, G.G.L.; de Carneiro, M.S.S.; Lousada Regadas Filho, J.G.; Maia, I.S.G. Determinação Das Frações Proteicas e de Carboidratos e Estimativa Do Valor Energético de Forrageiras e Subprodutos Da Agroindústria Produzidos No Nordeste Brasileiro. Semin. Cienc. Agrar. 2010, 31, 1079. [Google Scholar] [CrossRef][Green Version]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of Fiber Digestion from in Vitro Gas Production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT 9.1 User’s Guide; SAS Institute: Cary, NC, USA, 2004. [Google Scholar]
- Hassan, M.U.; Vastolo, A.; Gannuscio, R.; Maniaci, G.; Mancuso, I.; Calabrò, S.; Gallo, A.; Todaro, M.; Cutrignelli, M.I. Effects of Feeding Prickly Pear By-Product Silage as a Partial Replacement of Concentrate on Dairy Ewes: Milk Characteristics, Nutrient Utilisation and in Vitro Ruminal Fermentation. Anim. Feed. Sci. Technol. 2025, 324, 116330. [Google Scholar] [CrossRef]
- Garfias Silva, V.; Cordova Aguilar, M.S.; Ascanio, G.; Aguayo, J.P.; Pérez-Salas, K.Y.; Susunaga Notario, A.D.C. Acid Hydrolysis of Pectin and Mucilage from Cactus (Opuntia ficus) for Identification and Quantification of Monosaccharides. Molecules 2022, 27, 5830. [Google Scholar] [CrossRef]
- Magalhães, A.L.R.; Teodoro, A.L.; de Oliveira, L.P.; Gois, G.C.; Campos, F.S.; de Andrade, A.P.; de Melo, A.A.S.; do Nascimento, D.B.; da Silva, W.A. Chemical Composition, Fractionation of Carbohydrates and Nitrogen Compounds, Ruminal Degradation Kinetics, and in Vitro Gas Production of Cactus Pear Genotypes. Ciência Anim. Bras. 2021, 22, e-69338. [Google Scholar] [CrossRef]
- Ridla, M.; Abdullah, L.; Ernawati, A. Influence of Carbohydrate Fractions on Degradability, Rumen Fermentation, and Methane Emission in Selected Tropical Forages Using an In Vitro Study. Agric. Nat. Res. 2025, 59, 590304. [Google Scholar]
- Vago, M.E.; Fernández, P.V.; Ezquiaga, J.P.; Maiale, S.J.; Rodriguez, A.A.; Acosta, J.M.; Gortari, M.; Ruiz, O.A.; Ciancia, M. Overcoming Forage Challenges in Mesophytic Grasslands—The Advantages of Lotus Tenuis. Grasses 2025, 4, 19. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Publishing Associates: Ithaca, NY, USA, 1994. [Google Scholar]
- Silva, T.S.; de Araújo, G.G.L.; Santos, E.M.; de Oliveira, J.S.; Godoi, P.F.A.; Gois, G.C.; Perazzo, A.F.; Ribeiro, O.L.; Turco, S.H.N.; Campos, F.S. Intake, Digestibility, Nitrogen Balance and Performance in Lamb Fed Spineless Cactus Silage Associated with Forages Adapted to the Semiarid Environment Spineless Cactus Silages in Diets for Lambs. Livest. Sci. 2023, 268, 105168. [Google Scholar] [CrossRef]
- Noguera, R.R.; Saliba, E.O.; Mauricio, R.M. Comparación de Modelos Matemáticos Para Estimar Los Parámetros de Degradación Obtenidos a Través de La Técnica de Producción de Gas. Livest. Res. Rural. Dev. 2004, 16, 86. [Google Scholar]
- Christodoulou, C.; Kliem, K.E.; Auffret, M.D.; Humphries, D.J.; Newbold, J.R.; Davison, N.; Crompton, L.; Dhanoa, M.S.; Smith, L.G.; Stergiadis, S. In Vitro Rumen Degradation, Fermentation, and Methane Production of Four Agro-Industrial Protein-Rich Co-Products, Compared with Soyabean Meal. Anim. Feed. Sci. Technol. 2025, 319, 116151. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Tigre, J.S. Cinética e Produtos de Fermentação Ruminal de Rações Contendo Co-Produtos Agroindustriais, Universidade Estadual do Sudoeste da Bahia. Ph.D. Thesis, Universidade Estadual do Sudoeste da Bahia, Vitória da Conquista, Brazil, 2017. [Google Scholar]
Variable (g/kg) 1 | Sugarcane Bagasse | Miúda 2 | Baiana 2 | Mexicana 2 |
---|---|---|---|---|
DM | 905.0 | 131.0 | 123.1 | 111.2 |
OM | 911.2 | 935.0 | 921.5 | 901.2 |
NDF | 866.7 | 254.5 | 234.3 | 278.0 |
ADF | 583.9 | 222.5 | 191.2 | 240.8 |
EE | 8.0 | 16.5 | 19.0 | 22.0 |
TCs | 958.6 | 823.9 | 816.7 | 806.1 |
NFCs | 91.9 | 569.4 | 582.4 | 528.1 |
Ash | 150.0 | 113.1 | 121.3 | 131.9 |
CP | 18.4 | 46.5 | 43.0 | 40.0 |
Ca | 8.4 | 23.0 | 25.0 | 28.7 |
P | 10.9 | 1.8 | 2.1 | 2.9 |
CEL | 427.1 | 200.5 | 210.0 | 215.3 |
HEM | 282.8 | 32.0 | 35.1 | 37.2 |
LIG | 156.8 | 22.0 | 24.3 | 25.5 |
SBL 1 g/kg of DM | 150 | 300 | 450 | 600 | 150 | 300 | 450 | 600 | 150 | 300 | 450 | 600 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cactus 2 | Miúda | Baiana | Mexicana | |||||||||
Variable 3 | ||||||||||||
DM | 247.1 | 363.2 | 479.3 | 595.4 | 240.3 | 357.6 | 474.9 | 592.2 | 230.2 | 349.3 | 468.4 | 587.4 |
OM | 931.4 | 927.8 | 924.2 | 920.7 | 919.9 | 918.4 | 916.8 | 915.3 | 902.7 | 904.2 | 905.7 | 907.2 |
NDF | 346.3 | 438.1 | 529.9 | 621.8 | 329.1 | 424.0 | 518.8 | 613.7 | 366.30 | 454.6 | 542.9 | 631.2 |
ADF | 276.7 | 330.9 | 385.1 | 439.3 | 250.1 | 309.0 | 367.9 | 426.8 | 292.2 | 343.7 | 395.1 | 446.6 |
EE | 15.2 | 13.9 | 12.6 | 11.4 | 17.3 | 15.7 | 14.0 | 12.4 | 19.9 | 17.8 | 15.7 | 13.6 |
TCs | 844.1 | 864.3 | 884.5 | 904.7 | 837.9 | 859.2 | 880.5 | 901.8 | 828.9 | 851.8 | 874.7 | 897.6 |
NFCs | 497.7 | 426.1 | 354.5 | 282.9 | 508.8 | 435.2 | 361.6 | 288.1 | 462.6 | 397.2 | 331.8 | 266.3 |
Ash | 118.6 | 124.1 | 129.7 | 135.2 | 125.6 | 129.9 | 134.2 | 138.5 | 134.6 | 137.3 | 140.0 | 142.7 |
CP | 42.2 | 38.0 | 33.8 | 29.6 | 39.3 | 35.6 | 31.9 | 28.2 | 36.7 | 33.5 | 30.2 | 27.0 |
Ca | 20.8 | 18.6 | 16.4 | 14.2 | 22.5 | 20.0 | 17.5 | 15.0 | 25.6 | 22.6 | 19.5 | 16.5 |
P | 3.1 | 4.5 | 5.8 | 7.26 | 3.4 | 4.7 | 6.0 | 7.3 | 4.1 | 5.3 | 6.5 | 7.7 |
CEL | 234.4 | 268.4 | 302.4 | 336.4 | 242.5 | 275.1 | 307.6 | 340.2 | 247.0 | 278.8 | 310.6 | 342.3 |
HEM | 69.6 | 107.2 | 144.8 | 182.4 | 72.2 | 109.4 | 146.5 | 183.7 | 74.0 | 110.8 | 147.7 | 184.5 |
LIG | 42.2 | 62.4 | 82.6 | 102.8 | 44.1 | 64.0 | 83.9 | 103.8 | 45.1 | 64.8 | 84.5 | 104.2 |
Cactus Genotype | Sugarcane Bagasse Inclusion Level (g/kg DM) | p-Value | ||||
---|---|---|---|---|---|---|
0 | 150 | 300 | 450 | 600 | Bagasse Level | |
Miúda | 93.0 A,b | 30.2 B,b | 10.0 C,b | 7.9 D,b | 4.6 E,b | <0.001 |
Mexicana | 72.5 A,c | 7.5 B,c | 5.9 C,c | 3.6 C,c | 4.7 C,b | <0.001 |
Baiana | 116.1 A,a | 34.7 B,a | 23.4 C,a | 11.7 D,a | 11.0 D,a | <0.001 |
p-Value genotype | <0.001 | <0.001 | <0.001 | 0.002 | 0.015 |
Miúda Forage | ||||||||
---|---|---|---|---|---|---|---|---|
Variable | Sugarcane Bagasse Inclusion Level (g/kg DM) | Contrast (p-Value) | ||||||
0 | 150 | 300 | 450 | 600 | Linear | Quadratic | Cubic | |
IVDDM (g/kgDM) | 796.8 b,A | 380.4 a,B | 226.8 b,C | 191.4 b,D | 143.0 a,E | <0.001 | 0.107 | 0.801 |
IVDOM (g/kgDM) | 862.9 γ,Γ | 512.1 β,Δ | 344.4 γ,Θ | 294.8 γ,Λ | 199.5 γ,Ω | <0.001 | 0.171 | 0.649 |
Mexicana Forage | ||||||||
Variable | Sugarcane Bagasse Inclusion Level (g/kg DM) | Contrast (p-Value) | ||||||
0 | 150 | 300 | 450 | 600 | Linear | Quadratic | Cubic | |
IVDDM (g/kgDM) | 767.3 b,A | 239.8 c,B | 135.0 c,D | 122.5 c,D | 151.2 a,C | <0.001 | 0.079 | 0.803 |
IVDOM (g/kgDM) | 922.3 β,Γ | 466.3 γ,Δ | 433.1 β,Θ | 441.6 β,Θ | 360.8 α,Λ | 0.024 | 0.746 | 0.420 |
Baiana Forage | ||||||||
Variable | Sugarcane Bagasse Inclusion Level (g/kg DM) | Contrast (p-Value) | ||||||
0 | 150 | 300 | 450 | 600 | Linear | Quadratic | Cubic | |
IVDDM (g/kgDM) | 823.9 a,A | 310.7 b,B | 278.7 a,C | 233.8 a,D | 116.6 b,E | 0.001 | 0.836 | 0.398 |
IVDOM (g/kgDM) | 956.3 α,Γ | 647.4 α,Δ | 507.6 α,Θ | 475.3 α,Λ | 320.4 β,Ω | 0.015 | 0.848 | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torquato, I.A.; Costa, C.T.F.; Jesus, M.S.; Mata, F.; Santos, J.; Santana, H.E.P.; Silva, D.P.; Ruzene, D.S. Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region. Ruminants 2025, 5, 37. https://doi.org/10.3390/ruminants5030037
Torquato IA, Costa CTF, Jesus MS, Mata F, Santos J, Santana HEP, Silva DP, Ruzene DS. Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region. Ruminants. 2025; 5(3):37. https://doi.org/10.3390/ruminants5030037
Chicago/Turabian StyleTorquato, Iran Alves, Cleber Thiago Ferreira Costa, Meirielly Santos Jesus, Fernando Mata, Joana Santos, Hortência E. Pereira Santana, Daniel Pereira Silva, and Denise Santos Ruzene. 2025. "Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region" Ruminants 5, no. 3: 37. https://doi.org/10.3390/ruminants5030037
APA StyleTorquato, I. A., Costa, C. T. F., Jesus, M. S., Mata, F., Santos, J., Santana, H. E. P., Silva, D. P., & Ruzene, D. S. (2025). Spineless Cactus (Opuntia stricta and Nopalea cochenillifera) with Added Sugar Cane (Saccharum officinarum) Bagasse Silage as Bovine Feed in the Brazilian Semi-Arid Region. Ruminants, 5(3), 37. https://doi.org/10.3390/ruminants5030037