Stressors Inherent to Beef Cattle Management in the United States of America and the Resulting Impacts on Production Sustainability: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Environmental Extremes
2.1. Heat Stress
2.2. Climate
3. Nutrient Deprivation
3.1. Reproductive Performance
3.2. Gestation and Calving
4. Management Procedures
4.1. Transportation
4.2. Weaning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asres, A.; Amha, N. Effect of stress on animal health: A review. J. Biol. 2014, 4, 116–121. [Google Scholar]
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear, and Rage: An Account of Recent Researches into the Function of Emotional Excitement; Appleton and Company: New York, NY, USA, 1929. [Google Scholar]
- Damtew, A.; Erega, Y.; Ebrahim, H.; Tsegaye, S.; Msigie, D. The effect of long distance transportation stress on cattle: A review. J. Biomed. Res. 2018, 3, 3304–3308. [Google Scholar] [CrossRef]
- Chen, Y.; Arsenault, R.; Napper, S.; Griebel, P. Models and methods to investigate acute stress responses in cattle. Animals 2015, 5, 1268–1295. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Novo, A.; Pérez-Garnelo, S.S.; Villagrá, A.; Pérez-Villalobos, N.; Astiz, S. The effect of stress on reproduction and reproductive technologies in beef cattle—A review. Animals 2020, 10, 2096. [Google Scholar] [CrossRef] [PubMed]
- Minton, J.E. Function of the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system in models of acute stress in domestic farm animals. J. Anim. Sci. 1994, 72, 1891–1898. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.M.; Earley, B.; McGee, M.; Doyle, S. Characterisation of physiological and immunological responses in beef cows to abrupt weaning and subsequent housing. BMC Vet. Res. 2010, 6, 37. [Google Scholar] [CrossRef]
- Chrousos, G.P. The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, G.A.; Van De Kar, L.D. Neuroendocrine pharmacology of stress. Eur. J. Pharmacol. 2003, 463, 235–272. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Hughes, H.D.; Carroll, J.A.; Sanchez, N.C.B.; Richeson, J.T. Natural variations in the stress and acute phase responses of cattle. Innate Immun. 2014, 20, 888–896. [Google Scholar] [CrossRef]
- Hristov, A.N.; Degaetano, A.T.; Rotz, C.A.; Hoberg, E.; Skinner, R.H.; Felix, T.; Li, H.; Patterson, P.H.; Roth, G.; Hall, M.; et al. Climate change effects on livestock in the Northeast US and strategies for adaptation. Clim. Chang. 2018, 146, 33–45. [Google Scholar] [CrossRef]
- Lacetera, N. Impact of climate change on animal health and welfare. Anim. Front. 2019, 9, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, Q.; Peng, J.; Niu, H. Effects of long-term cold stress on growth performance, behavior, physiological parameters, and energy metabolism in growing beef cattle. Animals 2023, 13, 1619. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Rhoads, R.P. Ruminant Nutrition Symposium: Ruminant production and metabolic responses to heat stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef]
- Lees, A.M.; Sejian, V.; Wallage, A.L.; Steel, C.C.; Mader, T.L.; Lees, J.C.; Gaughan, J.B. The impact of heat load on cattle. Animals 2019, 9, 322. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Grings, E.E.; Roberts, A.J.; Tibbitts, B.T. Invited review: Choosing a calving date. Prof. Anim. Sci. 2016, 32, 145–153. [Google Scholar] [CrossRef]
- NASS. Agricultural Statistics Board; USDA: Washington, DC, USA, 2017. [Google Scholar]
- Cooke, R.F.; Daigle, C.L.; Moriel, P.; Smith, S.B.; Tedeschi, L.O.; Vendramini, J.M.B. Cattle adapted to tropical and subtropical environments: Social, nutritional, and carcass quality considerations. J. Anim. Sci. 2020, 98, skaa014. [Google Scholar] [CrossRef] [PubMed]
- Hahn, G.L. Dynamic responses of cattle to thermal heat loads. J. Anim. Sci. 1997, 77, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M. Heat stress and bull fertility. Theriogenology 2020, 153, 62–67. [Google Scholar] [CrossRef]
- Ealy, A.D.; Drost, M.; Hansen, P.J. Developmental changes in embryonic resistance to adverse effects of maternal heat stress in cows. J. Dairy Sci. 1993, 76, 2899–2905. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Eigenberg, R.A.; Hahn, G.L.; Nienaber, J.A.; Mader, T.L.; Spiers, D.E.; Parkhurst, A.M. Analyses of thermoregulatory responses of feeder cattle exposed to simulated heat waves. Int. J. Biometeorol. 2005, 49, 285–296. [Google Scholar] [CrossRef] [PubMed]
- AMS. Glossary of Meteorology, 5th ed.; American Meteorological Society: Boston, MA, USA, 1989. [Google Scholar]
- Brown-Brandl, T.M.; Nienaber, J.A.; Hahn, G.L.; Eigenberg, R.A. Analysis of meteorological parameters of different extreme heat waves. In Proceedings of the Livestock Environment VIII, Iguassu Falls, Brazil, 31 August–4 September 2008. [Google Scholar]
- Hahn, G.L.; Nienaber, J.A. Characterizing stress in feeder cattle. Beef Res. Program Prog. Rep. 1993, 4, 146–148. [Google Scholar]
- Gwazdauskas, F.C. Effects of climate on reproduction in cattle. J. Dairy Sci. 1985, 68, 1568–1578. [Google Scholar] [CrossRef]
- Roman-Ponce, H.; Thatcher, W.W.; Caton, D.; Barron, D.H.; Wilcox, C.J. Thermal stress effects on uterine blood flow in dairy cows. J. Anim. Sci. 1978, 46, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Oakes, G.K.; Walker, A.M.; Ehrenkranz, R.A.; Cefalo, R.C.; Chez, R.A. Uteroplacental blood flow during hyperthermia with and without respiratory alkalosis. J. Appl. Physiol. 1976, 41, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, L.P.; Ferrell, C.L.; Nienaber, J.A.; Ford, S.P. Effects of chronic environmental heat stress on blood flow and nutrient uptake by the uterus and fetus of the pregnant cow. J. Agric. Sci. 1985, 104, 289–297. [Google Scholar] [CrossRef]
- Broom, D.M. The welfare of livestock during road transport. In Long Distance Transport and Welfare of Farm Animals, 1st ed.; CABI: Wallingford, UK, 2008; pp. 157–181. [Google Scholar]
- Hemsworth, P.; Coleman, G. Effects of Stockperson Behavior on Animal Welfare and Productivity. In Proceedings of the 4th Boehringer Ingelheim Expert Forum on Farm Animal Wellbeing, Seville, Spain, 27 May 2011. [Google Scholar]
- Dunlap, S.E.; Vincent, C.K. Influence of postbreeding thermal stress on conception rate in beef cattle. J. Anim. Sci. 1971, 32, 1216–1218. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.J. Embryonic mortality in cattle from the embryo’s perspective. J. Anim. Sci. 2002, 80, E33–E44. [Google Scholar] [CrossRef]
- Edwards, J.L.; Hansen, P.J. Differential responses of bovine oocytes and preimplantation embryos to heat shock. Mol. Reprod. Dev. 1997, 46, 138–145. [Google Scholar] [CrossRef]
- Edwards, J.L.; Ealy, A.D.; Monterroso, V.H.; Hansen, P.J. Ontogeny of temperature-regulated heat shock protein 70 synthesis in preimplantation bovine embryos. Mol. Reprod. Dev. 1997, 48, 25–33. [Google Scholar] [CrossRef]
- Rivera, R.M.; Hansen, P.J. Development of cultured bovine embryos after exposure to high temperatures in the physiological range. Reproduction 2001, 121, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Ealy, A.D.; Howell, J.L.; Monterroso, V.H.; Aréchiga, C.F.; Hansen, P.J. Developmental changes in sensitivity of bovine embryos to heat shock and use of antioxidants as thermoprotectants. J. Anim. Sci. 1995, 73, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Collier, J.L.; Rhoads, R.P.; Baumgard, L.H. Invited review: Genes involved in the bovine heat stress response. J. Dairy Sci. 2008, 91, 445–454. [Google Scholar] [CrossRef]
- Silva, C.F.; Sartorelli, E.S.; Castilho, A.C.S.; Satrapa, R.A.; Puelker, R.Z.; Razza, E.M.; Ticianelli, J.S.; Eduardo, H.P.; Loureiro, B.; Barros, C.M. Effects of heat stress on development, quality and survival of Bos indicus and Bos taurus embryos produced in vitro. Theriogenology 2013, 79, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 1999, 18, 5943–5952. [Google Scholar] [CrossRef] [PubMed]
- Georgopoulos, C.; Welch, W.J. Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 1993, 9, 601–634. [Google Scholar] [CrossRef] [PubMed]
- Thulasiraman, V.; Xu, Z.; Uma, S.; Gu, Y.; Chen, J.-J.; Matts, R. L Evidence that Hsc70 negatively modulates the activation of the heme-regulated eIF-2alpha kinase in rabbit reticulocyte lysate. Eur. J. Biochem. 1998, 255, 552–562. [Google Scholar] [CrossRef]
- Hernández-Cerón, J.; Chase, C.C.; Hansen, P.J. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J. Dairy Sci. 2004, 87, 53–58. [Google Scholar] [CrossRef]
- Paula-Lopes, F.F.; Chase, C.C.; Al-Katanani, Y.M.; Iii, C.E.K.; Rivera, R.M.; Tekin, S.; Majewski, A.C.; Ocon, O.M.; Olson, T.A.; Hansen, P.J. Genetic divergence in cellular resistance to heat shock in cattle: Differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction 2003, 125, 285–294. [Google Scholar] [CrossRef]
- Deb, R.; Sajjanar, B.; Singh, U.; Kumar, S.; Singh, R.; Sengar, G.; Sharma, A. Effect of heat stress on the expression profile of Hsp90 among Sahiwal (Bos indicus) and Frieswal (Bos indicus × Bos taurus) breed of cattle: A comparative study. Gene 2014, 536, 435–440. [Google Scholar] [CrossRef]
- Scheffler, T.L. Connecting heat tolerance and tenderness in Bos indicus influenced cattle. Animals 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Polley, H.W.; Briske, D.D.; Morgan, J.A.; Wolter, K.; Bailey, D.W.; Brown, J.R. Climate change and North American rangelands: Trends, projections, and implications. Rangel. Ecol. Manag. 2013, 66, 493–511. [Google Scholar] [CrossRef]
- Reeves, M.C.; Bagne, K.E. Vulnerability of Cattle Production to Climate Change on U.S. Rangelands; US Department of Agriculture Forest Service: Fort Collins, CO, USA, 2016; Volume 39. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Redmond, K.; Hubbard, K. Temporal variations of extreme precipitation events in the United States: 1895–2000. Geophys. Res. Lett. 2003, 30, 1900. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Karl, T.R.; Easterling, D.R.; Sun, B.; Lawrimore, J.H. Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor. 2004, 5, 64–85. [Google Scholar] [CrossRef]
- Stewart, R.L.; Dyer, T.; Silcox, R. Drought Management Strategies for Beef Cattle; University of Georgia, Extension Service: Athens, GA, USA, 2017. [Google Scholar]
- Lemus, R. Pasture and Grazing Management under Drought Conditions; Mississippi State University, Extension Service: Starkville, MS, USA, 2023. [Google Scholar]
- Kruse, R.E.; Tess, M.W.; Grings, E.E.; Short, R.E.; Heitschmidt, R.K.; Phillips, W.A.; Mayeux, H.S. Evaluation of beef cattle operations utilizing different seasons of calving, weaning strategies, postweaning management, and retained ownership. Prof. Anim. Sci. 2008, 24, 319–327. [Google Scholar] [CrossRef]
- IPCC. AII Annex II: Climate system scenario tables. In Climate Change 2013: The Physical Science Basis, 1st ed.; Prather, M., Flato, G., Friedlingstein, P., Jones, C., Lamarque, J.F., Liao, H., Rasch, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1395–1445. [Google Scholar]
- McGranahan, D.A.; Yurkonis, K.A. Variability in grass forage quality and quantity in response to elevated CO2 and water limitation. Grass Forage Sci. 2018, 73, 517–521. [Google Scholar] [CrossRef]
- Harper, C.A. Native Warm-Season Grasses: Identification, Establishment and Management for Wildlife and Forage Production in the Mid-South; University of Tennessee, Extension Service: Knoxville, TN, USA, 2007. [Google Scholar]
- Augustine, D.J.; Blumenthal, D.M.; Springer, T.L.; LeCain, D.R.; Gunter, S.A.; Derner, J.D. Elevated CO2 induces substantial and persistent declines in forage quality irrespective of warming in mixedgrass prairie. Ecol. Appl. 2018, 28, 721–735. [Google Scholar] [CrossRef] [PubMed]
- Barbehenn, R.V.; Chen, Z.; Karowe, D.N.; Spickard, A. C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Glob. Chang. Biol. 2004, 10, 1565–1575. [Google Scholar] [CrossRef]
- Maas, J. Relationship between nutrition and reproduction in beef cattle. Vet. Clin. N. Am. Food Anim. Pract. 1987, 3, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Hough, R.L.; McCarthy, F.D.; Kent, H.D.; Eversole, D.E.; Wahlberg, M.L. Influence of nutritional restriction during late gestation on production measures and passive immunity in beef cattle. J. Anim. Sci. 1990, 68, 2622–2627. [Google Scholar] [CrossRef]
- Herd, D.B.; Sprott, L.R. Body Condition, Nutrition and Reproduction of Beef Cows; Texas Agricultural Experiment Station, Texas A&M University AgriLife Extension Service: College Station, TX, USA, 1986. [Google Scholar]
- Selk, G.E.; Wettemann, R.P.; Lusby, K.S.; Oltjen, J.W.; Mobley, S.L.; Rasby, R.J.; Garmendia, J.C. Relationships among weight change, body condition and reproductive performance of range beef cows. J. Anim. Sci. 1988, 66, 3153–3159. [Google Scholar] [CrossRef] [PubMed]
- Sprott, L.R.; Selk, G.E.; Adams, D.C. REVIEW: Factors affecting decisions on when to calve beef females. Prof. Anim. Sci. 2001, 17, 238–246. [Google Scholar] [CrossRef]
- Diskin, M.G.; Kenny, D.A. Managing the reproductive performance of beef cows. Theriogenology 2016, 86, 379–387. [Google Scholar] [CrossRef]
- Rutter, L.M.; Randel, R.D. Postpartum nutrient intake and body condition: Effect on pituitary function and onset of estrus in beef cattle. J. Anim. Sci. 1984, 58, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.W.; Lake, S.L.; Scholljegerdes, E.J.; Weston, T.R.; Nayigihugu, V.; Molle, J.D.C.; Moss, G.E. Nutritional controls of beef cow reproduction. J. Anim. Sci. 2005, 83, E90–E106. [Google Scholar] [CrossRef]
- Crowe, M.A.; Diskin, M.G.; Williams, E.J. Parturition to resumption of ovarian cyclicity: Comparative aspects of beef and dairy cows. Animal 2014, 8, 40–53. [Google Scholar] [CrossRef] [PubMed]
- Lucy, M.C. Stress, strain, and pregnancy outcome in postpartum cows. Anim. Reprod. 2019, 16, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, K.D.; Molle, G.; Revilla, R.; Roche, J.F.; Quintans, G.; Marongiu, L.; Sanz, A.; Mackey, D.R.; Diskin, M.G. Ovulation of the first dominant follicle arising after day 21 post partum in suckling beef cows. Anim. Sci. 2002, 75, 115–126. [Google Scholar] [CrossRef]
- Richards, M.W.; Spitzer, J.C.; Warner, M.B. Effect of varying levels of postpartum nutrition and body condition at calving on subsequent reproductive performance in bed cattle. J. Anim. Sci. 1986, 62, 300–306. [Google Scholar] [CrossRef]
- Vavra, M.; Raleigh, R.J. Coordinating beef cattle management with the range forage resource. J. Range Manag. 1976, 29, 449. [Google Scholar] [CrossRef]
- Nielson, H.R. Beef Cattle Management Systems for Estrus Synchronization and Heifer Development. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2015. [Google Scholar]
- Guilbert, H.R. Some endocrine relationships in nutritional reproductive failure (a review). J. Anim. Sci. 1942, 1, 3–13. [Google Scholar] [CrossRef]
- Randel, R.D. Nutrition and postpartum rebreeding in cattle. J. Anim. Sci. 1990, 68, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Clark, R.T.; Kloptenstein, T.J.; Volesky, D. Matching the cow with forage resources. Rangelands 1996, 18, 57–62. [Google Scholar]
- Adams, D.C.; Short, R.E. The role of animal nutrition on productivity in range environment. In Achieving Efficient Use of Rangeland Resources, 1st ed.; White, R.S., Short, R.E., Eds.; Montana Agriculture Experiment Station: Bozeman, MT, USA, 1988; pp. 37–43. [Google Scholar]
- Girolami, F.; Barbarossa, A.; Badino, P.; Ghadiri, S.; Cavallini, D.; Zaghini, A.; Nebbia, C. Effects of turmeric powder on aflatoxin M1 and aflatoxicol excretion in milk from dairy cows exposed to aflatoxin B1 at the EU maximum tolerable levels. Toxins 2022, 14, 430. [Google Scholar] [CrossRef] [PubMed]
- Nazhand, A.; Durazzo, A.; Lucarini, M.; Souto, E.B.; Santini, A. Characteristics, occurrence, detection and detoxification of aflatoxins in foods and feeds. Foods 2020, 9, 644. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.R. Aflatoxins and Dairy Cattle; Texas Agricultural Experiment Station, Texas A&M University AgriLife Extension Service: College Station, TX, USA, 2012. [Google Scholar]
- Harvey, K.M.; Cooke, R.F.; Marques, R.D.S. Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals 2021, 11, 1159. [Google Scholar] [CrossRef] [PubMed]
- Moriel, P.; Cooke, R.F.; Bohnert, D.W.; Vendramini, J.M.B.; Arthington, J.D. Effects of energy supplementation frequency and forage quality on performance, reproductive, and physiological responses of replacement beef heifers. J. Anim. Sci. 2012, 90, 2371–2380. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.R. Feeding minerals to cattle on pasture. Anim. Feed Sci. Technol. 1996, 60, 247–271. [Google Scholar] [CrossRef]
- Marston, T.T.; Blasi, D.A.; Brazle, F.K.; Kuhl, G.L. Beef Cow Nutrition Guide; Kansas State University, Agricultural Experiment Station and Cooperative Extension Service: Manhattan, KS, USA, 1998. [Google Scholar]
- Cooke, R.F.; Arthington, J.D.; Araujo, D.B.; Lamb, G.C.; Ealy, A.D. Effects of supplementation frequency on performance, reproductive, and metabolic responses of Brahman-crossbred females. J. Anim. Sci. 2008, 86, 2296–2309. [Google Scholar] [CrossRef] [PubMed]
- Kanuya, N.L.; Matiko, M.K.; Nkya, R.; Bittegeko, S.B.P.; Mgasa, M.N.; Reksen, O.; Ropstad, E. Seasonal changes in nutritional status and reproductive performance of Zebu cows kept under a traditional agro-pastoral system in Tanzania. Trop. Anim. Health. Prod. 2006, 38, 511–519. [Google Scholar] [CrossRef]
- Spears, J.W. Mineral in forages. In Forage Quality, Evaluation, and Utilization, 1st ed.; Fahey, G.C., Ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1994; pp. 281–317. [Google Scholar]
- Izquierdo, V.; Vedovatto, M.; Palmer, E.A.; Oliveira, R.A.; Silva, H.M.; Vendramini, J.M.B.; Moriel, P. Frequency of maternal supplementation of energy and protein during late gestation modulates preweaning growth of their beef offspring. Transl. Anim. Sci. 2022, 6, txac110. [Google Scholar] [CrossRef] [PubMed]
- Funston, R.N.; Larson, D.M.; Vonnahme, K.A. Effects of maternal nutrition on conceptus growth and offspring performance: Implications for beef cattle production. J. Anim. Sci. 2010, 88, E205–E215. [Google Scholar] [CrossRef] [PubMed]
- Bauman, D.E.; Eisemann, J.H.; Currie, W.B. Hormonal effects on partitioning of nutrients for tissue growth: Role of growth hormone and prolactin. Fed. Proc. 1982, 41, 2538–2544. [Google Scholar]
- Close, W.H.; Pettigrew, J.F. Mathematical models of sow reproduction. J. Reprod. Fertil. Suppl. 1990, 40, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Glore, S.R.; Layman, D.K. Cellular growth of skeletal muscle in weanling rats during dietary restrictions. Growth 1983, 47, 403–410. [Google Scholar]
- Greenwood, P.L.; Cafe, L.M. Prenatal and pre-weaning growth and nutrition of cattle: Long-term consequences for beef production. Animal 2007, 1, 1283–1296. [Google Scholar] [CrossRef]
- Nissen, P.M.; Danielsen, V.O.; Jorgensen, P.F.; Oksbjerg, N. Increased maternal nutrition of sows has no beneficial effects on muscle fiber number or postnatal growth and has no impact on the meat quality of the offspring. J. Anim. Sci. 2003, 81, 3018–3027. [Google Scholar] [CrossRef]
- Odde, K.G. Survival of the neonatal calf. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 501–508. [Google Scholar] [CrossRef]
- Corah, L.R.; Dunn, T.G.; Kaltenbach, C.C. Influence of prepartum nutrition on the reproductive performance of beef bemales and the performance of their progeny. J. Anim. Sci. 1975, 41, 819–824. [Google Scholar] [CrossRef]
- Noya, A.; Casasús, I.; Ferrer, J.; Sanz, A. Long-Term effects of maternal subnutrition in early pregnancy on cow-calf performance, immunological and physiological profiles during the next lactation. Animals 2019, 9, 936. [Google Scholar] [CrossRef]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock, 3rd ed.; CABI: Wallingford, UK, 1999. [Google Scholar]
- Hidiroglou, M.; Knipfel, J.E. Maternal-fetal relationships of copper, manganese, and sulfur in ruminants. A Review. J. Dairy Sci. 1981, 64, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Marques, R.S.; Cooke, R.F.; Rodrigues, M.C.; Moriel, P.; Bohnert, D.W. Impacts of cow body condition score during gestation on weaning performance of the offspring. Livest. Sci. 2016, 191, 174–178. [Google Scholar] [CrossRef]
- Burdick, N.C.; Randel, R.D.; Carroll, J.A.; Welsh, T.H. Interactions between temperament, stress, and immune function in cattle. Int. J. Zool. 2011, 2011, 373197. [Google Scholar] [CrossRef]
- Crookshank, H.R.; Elissalde, M.H.; White, R.G.; Clanton, D.C.; Smalley, H.E. Effect of transportation and handling of calves upon blood serum composition. J. Anim. Sci. 1979, 48, 430–435. [Google Scholar] [CrossRef] [PubMed]
- Rulofson, F.C.; Brown, D.E.; Bjur, R.A. Effect of blood sampling and shipment to slaughter on plasma catecholamine concentrations in nulls. J. Anim. Sci. 1988, 66, 1223–1229. [Google Scholar] [CrossRef] [PubMed]
- Lay, D.C.; Friend, T.H.; Randel, R.D.; Bowers, C.L.; Grissom, K.K.; Jenkins, O.C. Behavioral and physiological effects of freeze or hot-iron branding on crossbred cattle. J. Anim. Sci. 1992, 70, 330–336. [Google Scholar] [CrossRef]
- Buckham Sporer, K.R.; Weber, P.S.D.; Burton, J.L.; Earley, B.; Crowe, M.A. Transportation of young beef bulls alters circulating physiological parameters that may be effective biomarkers of stress. J. Anim. Sci. 2008, 86, 1325–1334. [Google Scholar] [CrossRef] [PubMed]
- Van Engen, N.K.; Coetzee, J.F. Effects of transportation on cattle health and production: A review. Anim. Health. Res. Rev. 2018, 19, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Schwartzkopf-Genswein, K.; Grandin, T. Cattle transport by road. In Livestock Handling and Transport, 4th ed.; Grandin, T., Ed.; CABI: Wallingford, UK, 2014; pp. 143–173. [Google Scholar]
- Swanson, J.C.; Morrow-Tesch, J. Cattle transport: Historical, research, and future perspectives. J. Anim. Sci. 2001, 79, E102–E109. [Google Scholar] [CrossRef]
- Marques, R.S.; Cooke, R.F.; Francisco, C.L.; Bohnert, D.W. Effects of twenty-four hour transport or twenty-four hour feed and water deprivation on physiologic and performance responses of feeder cattle. J. Anim. Sci. 2012, 90, 5040–5046. [Google Scholar] [CrossRef]
- Heiderscheit, K.J.; Hansen, S.L. Effect of increasing zinc supplementation on post-transit performance, behavior, blood and muscle metabolites, and gene expression in growing beef feedlot steers. J. Anim. Sci. 2022, 100, skac246. [Google Scholar] [CrossRef] [PubMed]
- Bravo, V.M.; Knowles, T.G.; Gallo, C. Transport, associated handling procedures and behaviour of calves marketed through chilean auction markets. Animals 2020, 10, 2170. [Google Scholar] [CrossRef]
- Step, D.L.; Krehbiel, C.R.; DePra, H.A.; Cranston, J.J.; Fulton, R.W.; Kirkpatrick, J.G.; Gill, D.R.; Payton, M.E.; Montelongo, M.A.; Confer, A.W. Effects of commingling beef calves from different sources and weaning protocols during a forty-two-day receiving period on performance and bovine respiratory disease. J. Anim. Sci. 2008, 86, 3146–3158. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.D.; Gilliam, J.N.; Mourer, G.; Stansberry, C. Comparison of effects of four weaning methods on health and performance of beef calves. Animal 2020, 14, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Enríquez, D.; Hötzel, M.J.; Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta. Vet. Scand. 2011, 53, 28. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, A.; McGee, M.; Doyle, S.; Earley, B. Biomarker responses to weaning stress in beef calves. Res. Vet. Sci. 2014, 97, 458–463. [Google Scholar] [CrossRef] [PubMed]
- Harland, R.J.; Jim, G.K.; Guichon, P.T.; Townsend, H.G.G.; Janzen, E.D. Efficacy of parenteral antibiotics for disease prophylaxis in feedlot calves. Can. Vet. J. 1991, 32, 163–168. [Google Scholar] [PubMed]
- Freeman, S.; Poore, M.; Pickworth, C.; Alley, M. Influence of weaning strategy on behavior, humoral indicators of stress, growth, and carcass characteristics. Transl. Anim. Sci 2021, 5, txaa231. [Google Scholar] [CrossRef] [PubMed]
- Blanco, M.; Casasús, I.; Palacio, J. Effect of age at weaning on the physiological stress response and temperament of two beef cattle breeds. Animal 2009, 3, 108–117. [Google Scholar] [CrossRef]
- Arthington, J.D.; Spears, J.W.; Miller, D.C. The effect of early weaning on feedlot performance and measures of stress in beef calves. J. Anim. Sci. 2005, 83, 933–939. [Google Scholar] [CrossRef]
- O’Loughlin, A.; Lynn, D.J.; McGee, M.; Doyle, S.; McCabe, M.; Earley, B. Transcriptomic analysis of the stress response to weaning at housing in bovine leukocytes using RNA-seq technology. BMC Genom. 2012, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Hickey, M.C.; Drennan, M.; Earley, B. The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef] [PubMed]
- Lynch, E.M.; McGee, M.; Doyle, S.; Earley, B. Effect of post-weaning management practices on physiological and immunological responses of weaned beef calves. Ir. J. Agric. Food Res. 2011, 50, 161–174. [Google Scholar]
- Lynch, E.M.; McGee, M.; Doyle, S.; Earley, B. Effect of pre-weaning concentrate supplementation on peripheral distribution of leukocytes, functional activity of neutrophils, acute phase protein and behavioural responses of abruptly weaned and housed beef calves. BMC Vet. Res. 2012, 8, 116–121. [Google Scholar] [CrossRef]
- Haley, D.B.; Bailey, D.W.; Stookey, J.M. The effects of weaning beef calves in two stages on their behavior and growth rate. J. Anim. Sci. 2005, 83, 2205–2214. [Google Scholar] [CrossRef] [PubMed]
- Price, E.O.; Harris, J.E.; Borgwardt, R.E.; Sween, M.L.; Connor, J.M. Fenceline contact of beef calves with their dams at weaning reduces the negative effects of separation on behavior and growth rate. J. Anim. Sci. 2003, 81, 116–121. [Google Scholar] [CrossRef]
- Lane, C. Fence Line Weaning Reduces Stress during Weaning of Beef Calves; University of Tennessee, Extension Service: Knoxville, TN, USA, 2020. [Google Scholar]
- Farney, J.K. Weaning method evaluation for beef cattle. Kans. Agric. Exp. Stn. Res. Rep. 2023, 9, 5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winton, T.S.; Nicodemus, M.C.; Harvey, K.M. Stressors Inherent to Beef Cattle Management in the United States of America and the Resulting Impacts on Production Sustainability: A Review. Ruminants 2024, 4, 227-240. https://doi.org/10.3390/ruminants4020016
Winton TS, Nicodemus MC, Harvey KM. Stressors Inherent to Beef Cattle Management in the United States of America and the Resulting Impacts on Production Sustainability: A Review. Ruminants. 2024; 4(2):227-240. https://doi.org/10.3390/ruminants4020016
Chicago/Turabian StyleWinton, Toriann Summer, Molly Christine Nicodemus, and Kelsey Margaret Harvey. 2024. "Stressors Inherent to Beef Cattle Management in the United States of America and the Resulting Impacts on Production Sustainability: A Review" Ruminants 4, no. 2: 227-240. https://doi.org/10.3390/ruminants4020016
APA StyleWinton, T. S., Nicodemus, M. C., & Harvey, K. M. (2024). Stressors Inherent to Beef Cattle Management in the United States of America and the Resulting Impacts on Production Sustainability: A Review. Ruminants, 4(2), 227-240. https://doi.org/10.3390/ruminants4020016