Thyroid Hormone-Responsive Genes in Primary Cultures of Rat Hepatic Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Animal Study
2.3. Microarray Analysis
2.4. Quantitative RT-PCR
2.5. Construction of Reporter Plasmids and Transient Transfection
2.6. Statistical Analysis
3. Results
3.1. T3-Responsive Genes in Primary Cultured Rat Hepatocytes
3.2. T3-Responsive Induction of mRNA for the Identified Genes in Rat Liver
3.3. T3-Dependent Promoter Activity of the 5′-Flanking Region of Pdxk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ChIP | Chromatin immunoprecipitation |
DR4 | A direct repeat separated by four nucleotides |
GH | Growth hormone |
GEO | Gene Expression Omnibus |
Q-RT-PCR | Quantitative reverse transcription polymerase chain reaction |
T3 | Triiodothyronine |
T4 | Thyroxine |
TR | Thyroid hormone receptor |
TRE | Thyroid hormone-responsive element |
References
- Zhang, J.; Lazar, M.A. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 2000, 62, 439–466. [Google Scholar] [CrossRef]
- Ortiga-Carvalho, T.M.; Chiamolera, M.I.; Pazos-Moura, C.C.; Wondisford, F.E. Hypothalamus-Pituitary-Thyroid Axis. Compr. Physiol. 2016, 6, 1387–1428. [Google Scholar]
- Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef]
- Brtko, J. Thyroid hormone and thyroid hormone nuclear receptors: History and present state of art. Endocr. Regul. 2021, 55, 103–119. [Google Scholar] [CrossRef]
- Anyetei-Anum, C.S.; Roggero, V.R.; Allison, L.A. Thyroid hormone receptor localization in target tissues. J. Endocrinol. 2018, 237, R19–R34. [Google Scholar] [CrossRef]
- Astapova, I. Role of co-regulators in metabolic and transcriptional actions of thyroid hormone. J. Mol. Endocrinol. 2016, 56, 73–97. [Google Scholar] [CrossRef]
- Marino, L.; Kim, A.; Ni, B.; Celi, F.S. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2023, 81, 651–669. [Google Scholar] [CrossRef]
- Piantanida, E.; Ippolito, S.; Gallo, D.; Masiello, E.; Premoli, P.; Cusini, C.; Rosetti, S.; Sabatino, J.; Segato, S.; Trimarchi, F.; et al. The interplay between thyroid and liver: Implications for clinical practice. J. Endocrinol. Investig. 2020, 43, 885–899. [Google Scholar] [CrossRef]
- Oppenheimer, J.H.; Schwartz, H.L.; Mariash, C.N.; Kinlaw, W.B.; Wong, N.C.; Freake, H.C. Advances in our understanding of thyroid hormone action at the cellular level. Endocr. Rev. 1987, 8, 288–308. [Google Scholar] [CrossRef]
- Park, E.A.; Jerden, D.C.; Bahouth, S.W. Regulation of phosphoenolpyruvate carboxykinase gene transcription by thyroid hormone involves two distinct binding sites in the promoter. Biochem. J. 1995, 309, 913–919. [Google Scholar] [CrossRef]
- Shin, D.-J.; Plateroti, M.; Samarut, J.; Osborne, T.F. Two uniquely arranged thyroid hormone response elements in the far upstream 5′ flanking region confer direct thyroid hormone regulation to the murine cholesterol 7alpha hydroxylase gene. Nucleic Acids Res. 2006, 34, 3853–3861. [Google Scholar] [CrossRef]
- Yin, L.; Wang, Y.; Dridi, S.; Vinson, C.; Hillgartner, F.B. Role of CCAAT/enhancer-binding protein, histone acetylation, and coactivator recruitment in the regulation of malic enzyme transcription by thyroid hormone. Mol. Cell. Endocrinol. 2005, 245, 43–52. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Kim, S.; Harney, J.W.; Larsen, P.R. Further characterization of thyroid hormone response elements in the human type 1 iodothyronine deiodinase gene. Endocrinology 1998, 139, 1156–1163. [Google Scholar] [CrossRef]
- Feng, X.; Jiang, Y.; Meltzer, P.; Yen, P.M. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol. Endocrinol. 2000, 14, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Flores-Morales, A.; Gullberg, H.; Fernandez, L.; Ståhlberg, N.; Lee, N.H.; Vennström, B.; Norstedt, G. Patterns of liver gene expression governed by TRbeta. Mol. Endocrinol. 2002, 16, 1257–1268. [Google Scholar]
- Zekri, Y.; Guyot, R.; Flamant, F. An Atlas of Thyroid Hormone Receptors’ Target Genes in Mouse Tissues. Int. J. Mol. Sci. 2022, 23, 11444. [Google Scholar] [CrossRef]
- Fujimoto, N.; Igarashi, K.; Kanno, J.; Inoue, T. Identification of estrogen-responsive genes in the GH3 cell line by cDNA microarray analysis. J. Steroid Biochem. Mol. Biol. 2004, 91, 121–129. [Google Scholar] [CrossRef]
- Matsubara, K.; Sanoh, S.; Ohta, S.; Kitamura, S.; Sugihara, K.; Fujimoto, N. An improved thyroid hormone reporter assay to determine the thyroid hormone-like activity of amiodarone, bithionol, closantel and rafoxanide. Toxicol. Lett. 2012, 208, 30–35. [Google Scholar] [CrossRef]
- de Souza, J.S. Thyroid hormone biosynthesis and its role in brain development and maintenance. Adv. Protein Chem. Struct. Biol. 2024, 142, 329–365. [Google Scholar] [PubMed]
- Gobel, A.; Gottlich, M.; Reinwald, J.; Rogge, B.; Uter, J.C.; Heldmann, M.; Sartorius, A.; Brabant, G.; Munte, T.F. The Influence of Thyroid Hormones on Brain Structure and Function in Humans. Exp. Clin. Endocrinol. Diabetes 2020, 128, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Seelig, S.; Liaw, C.; Towle, H.C.; Oppenheimer, J.H. Thyroid hormone attenuates and augments hepatic gene expression at a pretranslational level. Proc. Natl. Acad. Sci. USA 1981, 78, 4733–4737. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sekine, S.; Song, B.; Ito, K. Use of Primary Rat Hepatocytes for Prediction of Drug-Induced Mitochondrial Dysfunction. Curr. Protoc. Toxicol. 2017, 72, 14.16.1–14.16.10. [Google Scholar] [CrossRef]
- Chung, I.H.; Liu, H.; Lin, Y.-H.; Chi, H.-C.; Huang, Y.-H.; Yang, C.-C.; Yeh, C.-T.; Tan, B.C.-M.; Lin, K.-H. ChIP-on-chip analysis of thyroid hormone-regulated genes and their physiological significance. Oncotarget 2016, 7, 22448–22459. [Google Scholar] [CrossRef]
- Chatonnet, F.; Guyot, R.; Benoît, G.; Flamant, F. Genome-wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc. Natl. Acad. Sci. USA 2013, 110, E766–E775. [Google Scholar] [CrossRef] [PubMed]
- di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical aspects of pyridoxal 5′-phosphate availability. Front. Biosci. 2012, 4, 897–913. [Google Scholar]
- Eliot, A.C.; Kirsch, J.F. Pyridoxal phosphate enzymes: Mechanistic, structural, and evolutionary considerations. Annu. Rev. Biochem. 2004, 73, 383–415. [Google Scholar] [CrossRef]
- Elstner, M.; Morris, C.M.; Heim, K.; Lichtner, P.; Bender, A.; Mehta, D.; Schulte, C.; Sharma, M.; Hudson, G.; Goldwurm, S.; et al. Single-cell expression profiling of dopaminergic neurons combined with association analysis identifies pyridoxal kinase as Parkinson’s disease gene. Ann. Neurol. 2009, 66, 792–798. [Google Scholar] [CrossRef]
- Wider, C.; Ross, O.A.; Wszolek, Z.K. Genetics of Parkinson disease and essential tremor. Curr. Opin. Neurol. 2010, 23, 388–393. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, L.; Huang, W.; Abisola, F.H.; Zhang, Y.; Zhang, G.; Yao, L. Identification of a prognostic cuproptosis-related signature in hepatocellular carcinoma. Biol. Direct 2023, 18, 4. [Google Scholar] [CrossRef]
- Wu, S.M.; Cheng, W.L.; Lin, C.D.; Lin, K.H. Thyroid hormone actions in liver cancer. Cell. Mol. Life Sci. 2013, 70, 1915–1936. [Google Scholar] [CrossRef]
- Yen, P.M.; Ando, S.; Feng, X.; Liu, Y.; Maruvada, P.; Xia, X. Thyroid hormone action at the cellular, genomic and target gene levels. Mol. Cell. Endocrinol. 2006, 246, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Katz, R.W.; Subauste, J.S.; Koenig, R.J. The interplay of half-site sequence and spacing on the activity of direct repeat thyroid hormone response elements. J. Biol. Chem. 1995, 270, 5238–5242. [Google Scholar] [CrossRef] [PubMed]
- Umesono, K.; Murakami, K.K.; Thompson, C.C.; Evans, R.M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 1991, 65, 1255–1266. [Google Scholar] [CrossRef] [PubMed]
- Norman, M.F.; Lavin, T.N.; Baxter, J.D.; West, B.L. The rat growth hormone gene contains multiple thyroid response elements. J. Biol. Chem. 1989, 264, 12063–12073. [Google Scholar] [CrossRef]
- Melis, D.; Havelaar, A.C.; Verbeek, E.; Smit, G.P.A.; Benedetti, A.; Mancini, G.M.S.; Verheijen, F. NPT4, a new microsomal phosphate transporter: Mutation analysis in glycogen storage disease type Ic. J. Inherit. Metab. Dis. 2004, 27, 725–733. [Google Scholar] [CrossRef]
Gene | GenBank Accession # | Induction (T3/C, 24 h) | Gene Name/Function | |
---|---|---|---|---|
GeneChip | Q-PCR | |||
Pdxk | NM_031769 | 3.94 | 3.3 | Pyridoxal kinase (pyridoxal-5′-phosphate synthesis) |
Pck1 | NM_198780 | 3.65 | 4.0 | Phosphoenolpyruvate carboxykinase 1 |
Slc17a2 | NM_001107353 | 3.13 | 3.0 | Sodium/phosphate cotransporter 3 (in membrane) |
Uros | NM_001012068 | 3.05 | 0.8 | Uroporphyrinogen III synthase |
Sult1C2a | NM_001013177 | 2.99 | 1.0 | Sulfotransferase |
Camk2b | NM_001042354 | 2.95 | 1.5 | Calcium/calmodulin-dependent protein kinase 2b |
Ces7 | NM_001012056 | 2.90 | n.d. | Carboxylesterase 7 |
Camk2a | NM_012920 | 2.81 | n.d. | Calcium/calmodulin-dependent protein kinase 2a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fujimoto, N.; Kitamura, S. Thyroid Hormone-Responsive Genes in Primary Cultures of Rat Hepatic Cells. DNA 2025, 5, 18. https://doi.org/10.3390/dna5020018
Fujimoto N, Kitamura S. Thyroid Hormone-Responsive Genes in Primary Cultures of Rat Hepatic Cells. DNA. 2025; 5(2):18. https://doi.org/10.3390/dna5020018
Chicago/Turabian StyleFujimoto, Nariaki, and Shigeyuki Kitamura. 2025. "Thyroid Hormone-Responsive Genes in Primary Cultures of Rat Hepatic Cells" DNA 5, no. 2: 18. https://doi.org/10.3390/dna5020018
APA StyleFujimoto, N., & Kitamura, S. (2025). Thyroid Hormone-Responsive Genes in Primary Cultures of Rat Hepatic Cells. DNA, 5(2), 18. https://doi.org/10.3390/dna5020018