Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges
Abstract
:1. Introduction
1.1. Research Objectives and Methodology
- A classification and description of the privacy and data protection threats when using ML algorithms for automated decision-making systems, associating each of them with the nonfulfillment of specific legal provisions;
- A review of the data protection engineering techniques that have been proposed to alleviate the aforementioned privacy and data protection threats;
- Further investigation of the application of differential privacy (DP) techniques to the training dataset via exploring the effect that each parameter of an algorithm has when evaluating both the accuracy of the output as well as the privacy achieved for the training dataset.
- (a)
- First, important results in the field of data protection attacks on ML systems are surveyed in conjunction with relevant data protection engineering techniques that have been proposed. In this respect, for each known privacy threat in ML systems, we associate the relevant provision of the GDPR that seems to not be in place, thus establishing direct connections on how the nonfulfillment of legal requirements yields specific weaknesses (allowing effective privacy attacks) in practice;
- (b)
- Additionally, based on the work in [15] that applies DP to the training dataset of deep learning algorithms, some new results are also given, based on a set of extensive experiments relying on the above work that we carried out, indicating that there is still much room for further research since we, indeed, manage to achieve better accuracies for the algorithms by appropriately configuring several hyperparameters. However, we also address the challenge of what should be considered “acceptable” accuracy when we refer to decision-making systems concerning individuals.
1.2. Structure of the Paper
2. Background
2.1. Automated Decision-Making Systems and Relevant Risks for Fundamental Rights
2.2. Personal Data Protection—Legal Provisions
2.3. Summary of the Main Challenges
3. Data Protection Risks of ML Systems and Relations with GDPR Provisions
3.1. Reidentification Attacks
3.2. Reconstruction Attacks
3.3. Model Inversion Attacks
3.4. Member Inference Attacks
4. Mitigating the Data Protection Risks
4.1. Protection against Reidentification Attacks
4.1.1. Noncentralized Approaches
4.1.2. Centralized Approaches
4.2. Protection against Reconstruction Attacks
4.3. Protection against Model Inversion Attacks
4.4. Protection against Member Inference Attacks
5. Further Exploring Differential Privacy in the Training Dataset—Results
- (i)
- Batch_Size: It determines the number of training samples used to train the network in an iteration (i.e., before updating the model parameters);
- (ii)
- Learning_Rate: This is an important hyperparameter of a neural network that controls how much to change the model in response to the estimated error each time the model weights are updated;
- (iii)
- L2Norm_Bound: This hyperparameter specifies the bound value for the clipping of the gradient descent algorithm (i.e., to not have too large weights while ensuring that the important components in the weight vector are larger than the other components) [15];
- (iv)
- Sigma: This hyperparameter specifies the noise scale to be added to the stochastic gradient descent algorithm [15];
- (v)
- Use_Privacy: This hyperparameter specifies whether the so-called private stochastic gradient descent algorithm, which introduces noise in each iteration of the stochastic gradient descent algorithm, will be used or not;
- (vi)
- N_Epochs: This hyperparameter specifies the number of epochs for which the machine learning algorithm will be trained. An epoch refers to one cycle through the full training dataset;
- (vii)
- Eps: This hyperparameter relates to privacy that can be controlled by the data analyst to maintain the balance between privacy and accuracy. More precisely, it specifies the initial value of the parameter “ε” (for differentially private settings) to be used when training, testing, and verifying the machine learning algorithm;
- (viii)
- Delta: This hyperparameter specifies the initial value of the parameter “δ” (for differentially private settings) to be used during the training, testing, and verification of the machine learning algorithm;
- (ix)
- Max_Eps: This hyperparameter specifies the maximum value of the parameter “ε” to be used when training, testing and verifying the machine learning algorithm. A larger value to this hyperparameter yields less noise into the stochastic gradient descent algorithm, whilst a smaller value to this hyperparameter yields more noise into the stochastic gradient descent algorithm;
- (x)
- Max_Delta: This hyperparameter specifies the maximum value of the parameter “δ” (for differentially private settings) to be used during the training, testing, and verification of the machine learning algorithm;
- (xi)
- Target_Eps: This hyperparameter specifies the value of the parameter “ε” that is actually used. If this value becomes greater than the “Max_Eps” hyperparameter, the program terminates.
6. Discussion
- (a)
- Is the usage of an ML algorithm fully necessary? If yes, which type of ML algorithm fits better with our needs and why?;
- (b)
- Are the identities of the individuals whose data form the training dataset protected?;
- (c)
- Is it possible to extract personal information concerning the training dataset from the features/parameters of the ML model?;
- (d)
- Is the model resistant to reconstruction attacks, model inversion attacks, and member inference attacks?;
- (e)
- Under the assumption that the above is ensured (which needs to be demonstrated), is the algorithm accurate? How this can be proved?
- (a)
- What should be the interplay between an FRIA and DPIA? For example, the questions stated above concerning how privacy risks are mitigated by an ML algorithm seem to be better addressed first in the context of an FRIA;
- (b)
- How easy is it to conduct a robust FRIA/DPIA that demonstrates that all the State-of-the-Art research outcomes on privacy-enhancing technologies for ML systems have been meticulously taken into account? Note that, recalling our previous analysis based on experimental results, this is a very challenging task.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
DP | Differential privacy |
DPIA | Data protection impact assessment |
FL | Federated learning |
FRIA | Fundamental rights impact assessment |
GDPR | General Data Protection Regulation |
ML | Machine learning |
PII | Personally identifiable information |
SVM | Support vector machine |
UN | United Nations |
XAI | Explainable artificial intelligence |
References
- Bergs, T.; Holst, C.; Gupta, P.; Augspurger, T. Digital image processing with deep learning for automated cutting tool wear detection. Procedia Manuf. 2022, 48, 947–958. [Google Scholar] [CrossRef]
- Qin, S.J.; Chiang, L.H. Advances and opportunities in machine learning for process data analytics. Comput. Chem. Eng. 2019, 126, 465–473. [Google Scholar] [CrossRef]
- Mallozi, P. Combining Machine-Learning with Invariants Assurance Techniques for Autonomous Systems. In Proceedings of the IEEE/ACM 39th International Conference on Software Engineering Companion (ICSE-C), Buenos Aires, Argentina, 20–28 May 2017; pp. 485–486. [Google Scholar] [CrossRef]
- Ivanko, D.; Ryumin, D.; Karpov, A. A Review of Recent Advances on Deep Learning Methods for Audio-Visual Speech Recognition. Mathematics 2023, 11, 2665. [Google Scholar] [CrossRef]
- Sharma, S.; Bhatt, M.; Sharma, P. Face Recognition System Using Machine Learning Algorithm. In Proceedings of the 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020; pp. 1162–1168. [Google Scholar] [CrossRef]
- Mosavi, A.; Varkonyi-Koczy, A. Integration of Machine Learning and Optimization for Robot Learning. In Proceedings of the 15th International Conference on Recent Global Research and Education: Technological Challenges, Warsaw, Poland, 26–28 September 2016; pp. 349–356. [Google Scholar] [CrossRef]
- Boukerche, A.; Wang, J. Machine Learning-based traffic prediction models for Intelligent Transportation Systems. Comput. Netw. 2020, 181, 107530. [Google Scholar] [CrossRef]
- Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9, 4396. [Google Scholar] [CrossRef]
- Shinde, P.P.; Shah, S. A Review of Machine Learning and Deep Learning applications. In Proceedings of the 4th International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 14–16 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Braker, C.; Shiaeles, S.; Bendiab, G.; Savage, N.; Limniotis, K. BotSpot: Deep Learning Classification of Bot Accounts Within Twitter. In Proceedings of the Internet of Things, Smart Spaces, and Next Generation Networks and Systems (NEW2AN ruSMART), St. Petersburg, Russia, 26–28 August 2020; pp. 165–175. [Google Scholar] [CrossRef]
- Data Protection WP Art. 29. Guidelines on Automated Individual Decision-Making and Profiling for the Purposes of Regulation 2016/679. 2018. Available online: https://ec.europa.eu/newsroom/article29/items/612053 (accessed on 24 November 2023).
- European Union. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data and repealing Directive 95/46/EC (General Data Protection Regulation). Off. J. Eur. Union 2016, 119, 1–88. [Google Scholar]
- Mohassel, P.; Zhang, Y. SecureML: A System for Scalable Privacy-Preserving Machine Learning. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–24 May 2017; pp. 19–38. [Google Scholar] [CrossRef]
- Liu, B.; Ding, M.; Shaham, S.; Rahayu, W.; Farokhi, F.; Lin, Z. When Machine Learning Meets Privacy: A Survey and Outlook. ACM Comput. Surv. 2021, 54, 1–36. [Google Scholar] [CrossRef]
- Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep Learning with Differential Privacy. In Proceedings of the ACM SIGSAC Conf. on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 308–318. [Google Scholar] [CrossRef]
- Hesamifard, E.; Takabi, H.; Ghasemi, M.; Wright, R.N. Privacy-preserving Machine Learning as a Service. In Proceedings of the Privacy Enhancing Technologies Symposium, Barcelona, Spain, 24–27 July 2018; pp. 123–142. [Google Scholar] [CrossRef]
- Chhetri, T.; Kurteva, A.; DeLong, R.; Hilscher, R.; Korte, K.; Fensel, A. Data Protection by Design Tool for Automated GDPR Compliance Verification Based on Semantically Modeled Informed Consent. Sensors 2022, 22, 2763. [Google Scholar] [CrossRef] [PubMed]
- Michael, J.B.; Kuhn, R.; Voas, J. Security or Privacy: Can You Have Both? Computer 2020, 53, 20–30. [Google Scholar] [CrossRef]
- BEUC. Automated Decision Making and Artificial Intelligence—A Consumer Perspective. 2018. Available online: https://www.beuc.eu/sites/default/files/publications/beuc-x-2018-058_automated_decision_making_and_artificial_intelligence.pdf (accessed on 24 November 2023).
- Gilman, M. Poverty Algorithms. Data and Society 2020. Available online: https://datasociety.net/wp-content/uploads/2020/09/Poverty-Lawgorithms-20200915.pdf (accessed on 24 November 2023).
- Goodman, R. Why Amazon’s Automated Hiring Tool Discriminated Against Women. ACLU 2018. Available online: https://www.aclu.org/news/womens-rights/why-amazons-automated-hiring-tool-discriminated-against (accessed on 24 November 2023).
- Hirvonen, H. Just accountability structures—A way to promote the safe use of automated decision-making in the public sector. AI Soc. 2024, 39, 155–167. [Google Scholar] [CrossRef]
- Center for Democracy and Technology. AI & Machine Learning. 2019. Available online: https://cdt.org/ai-machine-learning/ (accessed on 22 October 2023).
- Madden, M.; Gilman, M.; Levy, K.; Marwick, A. Privacy, Poverty, and Big Data: A Matrix of vulnerabilities for poor Americans. Wash. Univ. Law Rev. 2017, 95, 53. Available online: https://openscholarship.wustl.edu/law_lawreview/vol95/iss1/6 (accessed on 24 November 2023).
- Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019, 366, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.; Damani, D.; Chariar, V. Review and content analysis of textual expressions as a marker for depressive and anxiety disorders (DAD) detection using machine learning. Discov. Artif. Intell. 2023, 3, 38. [Google Scholar] [CrossRef]
- Parmar, S.; Paunwala, C. Early detection of dyslexia based on EEG with novel predictor extraction and selection. Discov. Artif. Intell. 2023, 3, 33. [Google Scholar] [CrossRef]
- Ghaffar Nia, N.; Kaplanoglu, E.; Nasab, A. Evaluation of Artificial Intelligence techniques in disease diagnosis and prediction. Discov. Artif. Intell. 2023, 3, 5. [Google Scholar] [CrossRef]
- United Nations. Universal Declaration of Human Rights. 1948. Available online: https://www.un.org/en/about-us/universal-declaration-of-human-rights (accessed on 24 November 2023).
- United Nations. International Covenant on Civil and Political Rights. 1966. Available online: https://www.ohchr.org/en/instruments-mechanisms/instruments/international-covenant-civil-and-political-rights (accessed on 24 November 2023).
- European Union. Charter Of Fundamental Rights of the European Union. Off. J. Eur. Communities 2000, 1–64. Available online: https://www.europarl.europa.eu/charter/pdf/text_en.pdf (accessed on 24 November 2023).
- Kaminski, M. A Recent Renaissance in Privacy Law. Commun. ACM 2020, 24–27. Available online: https://scholar.law.colorado.edu/articles/1292/ (accessed on 24 November 2023).
- Gellert, R. Personal data’s ever-expanding scope in smart environments and possible path(s) for regulating emerging digital technologies. Int. Priv. Law 2021, 11, 196–208. [Google Scholar] [CrossRef]
- Narayanan, A.; Shmatikov, V. Robust de-anonymization of large sparse datasets. In Proceedings of the IEEE Symposium on Security and Privacy, Oakland, CA, USA, 18–21 May 2018; pp. 115–125. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Tjoa, E.; Guan, C. A survey on explainable artificial intelligence (XAI): Toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4793–4813. [Google Scholar] [CrossRef]
- Gunning, D.; Aha, D. DARPA’s Explainable Artificial Intelligence (XAI) Program. AI Mag. 2019, 40, 44–58. [Google Scholar] [CrossRef]
- OECD. Advancing Accountability in AI—Governing and Managing Risks throughout the Lifecycle for Trustworthy AI. 2023. Available online: https://www.oecd-ilibrary.org/science-and-technology/advancing-accountability-in-ai_2448f04b-en (accessed on 24 November 2023).
- Henin, C.; Le Métayer, D. Beyond explainability: Justifiability and contestability of algorithmic decision systems. AI Soc. 2022, 2, 1397–1410. [Google Scholar] [CrossRef]
- Goldsteen, A.; Ezov, G.; Shmelkin, R.; Moffie, M.; Farkash, A. Data minimization for GDPR compliance in machine learning models. AI Ethics 2022, 2, 477–491. [Google Scholar] [CrossRef]
- Slijepčević, D.; Henzl, M.; Klausner, L.D.; Dam, T.; Kieseberg, P.; Zeppelzauer, M. k-Anonymity in practice: How generalisation and suppression affect machine learning classifiers. Comput. Secur. 2021, 111, 102488. [Google Scholar] [CrossRef]
- Feng, J.; Jain, A.K. Fingerprint Reconstruction: From Minutiae to Phase. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 209–223. [Google Scholar] [CrossRef]
- Papernot, N.; McDaniel, P.; Sinha, A.; Wellman, M.P. SoK: Security and Privacy in Machine Learning. In Proceedings of the IEEE European Symposium on Security and Privacy, London, UK, 23–27 April 2018. [Google Scholar] [CrossRef]
- Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015; pp. 1322–1333. [Google Scholar] [CrossRef]
- Al-Rubaie, M.; Chang, J.M. Reconstruction Attacks Against Mobile-Based Continuous Authentication Systems in the Cloud. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2648–2663. [Google Scholar] [CrossRef]
- Hu, H.; Salcic, Z.; Sun, L.; Dobbie, G.; Yu, P.S.; Zhang, X. Membership Inference Attacks on Machine Learning: A Survey. ACM Comput. Surv. 2021, 54, 1–37. [Google Scholar] [CrossRef]
- Shokri, R.; Stronati, M.; Song, C.; Shmatikov, V. Membership inference attacks against machine learning models. In Proceedings of the IEEE Symposium on Security and Privacy, San Jose, CA, USA, 22–24 May 2017; pp. 3–18. [Google Scholar] [CrossRef]
- Hu, K.; Yue, H.; Guo, L.; Yuanxiong, G.; Yuguang, F. Privacy-Preserving Machine Learning Algorithms for Big Data Systems. In Proceedings of the IEEE 35th International Conference on Distributed Computing Systems, Columbus, OH, USA, 29 June–2 July 2015; pp. 318–327. [Google Scholar] [CrossRef]
- McMahan, B.; Ramag, D. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2017. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on 22 October 2023).
- Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–22 May 2019; pp. 739–753. [Google Scholar] [CrossRef]
- Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings of the IEEE Symposium on Security and Privacy, San Francisco, CA, USA, 20–22 May 2019; pp. 691–706. [Google Scholar] [CrossRef]
- Geiping, J.; Bauermeister, H.; Dröge, H.; Moeller, M. Inverting Gradients-How Easy Is It to Break Privacy in Federated Learning? In Proceedings of the 34th International Conference on Neural Information Processing Systems, Vancouver BC, Canada, 6–12 December; 2020; pp. 16937–16947. [Google Scholar]
- Takabi, H.; Hesamifard, E.; Ghasemi, M. Privacy preserving multi-party machine learning with Homomorphic encryption. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS), Barcelona, Spain, 5–10 December 2016; Available online: https://pmpml.github.io/PMPML16/papers/PMPML16_paper_14.pdf (accessed on 24 November 2023).
- Xu, G.; Li, G.; Guo, S.; Zhang, T.; Li, H. Secure Decentralized Image Classification with Multiparty Homomorphic Encryption. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 3185–3198. [Google Scholar] [CrossRef]
- Malekzadeh, M.; Athanasakis, D.; Haddadi, H.; Livshits, B. Privacy-Preserving Bandits. arXiv 2020, arXiv:1909.04421. [Google Scholar]
- Zhang, T.; He, Z.; Lee, R.B. Privacy-preserving Machine Learning through Data Obfuscation. arXiv 2018, arXiv:1807.01860. [Google Scholar]
- Crockett, E. A Low-Depth Homomorphic Circuit for Logistic Regression Model Training. Cryptology ePrint Archive, Paper 2020/1483, 2020. Available online: https://eprint.iacr.org/2020/1483 (accessed on 22 October 2023).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. Available online: https://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf (accessed on 24 November 2023).
- Tople, S.; Sharma, A.; Nori, A. Alleviating Privacy Attacks via Causal Learning. In Proceedings of the 37th International Conference on Machine Learning (ICML), Vienna, Austria, 13–18 July 2020; pp. 9537–9547. [Google Scholar]
- LeCun, Y.; Cortes, C.; Burges, C.J. THE MNIST Database. 2023. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 22 October 2023).
- Krizhevsky, A.; Nair, V.; Hinton, G. The CIFAR-10 Dataset. 2023. Available online: https://www.cs.toronto.edu/~kriz/cifar.html (accessed on 22 October 2023).
- Dwork, C.; Kenthapadi, K.; McSherry, F.; Mironov, I.; Naor, M. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Proceedings of the Advances in Cryptology—EUROCRYPT, Saint Petersburg, Russia, 28 May–1 June 2006; pp. 486–503. [Google Scholar] [CrossRef]
- Lillelund, C.; Hopkins, T. dpsgd-Optimizer. Available online: https://github.com/thecml/dpsgd-optimizer (accessed on 22 October 2023).
- Novelli, C.; Casolari, F.; Rotolo, A.; Taddeo, M.; Floridi, L. Taking AI risks seriously: A new assessment model for the AI Act. AI Soc. 2023. [Google Scholar] [CrossRef]
# | Batch_Size | Learning_Rate | L2Norm_Bound | Sigma | Dataset | Model | Use_Privacy | N_Epochs | Eps | Delta | Max_Eps | Max_Delta | Target_Eps |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | False | 100 | ____ | ______ | _______ | _____ | ______ |
2 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 100 | 1.0 | 1 × 10−7 | 16.0 | 1 × 10−3 | 16.0 |
3 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | False | 100 | ____ | _____ | _______ | _____ | _______ |
4 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 100 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
5 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | False | 100 | ____ | ______ | _______ | _____ | _______ |
6 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 100 | 1.0 | 1 × 10−7 | 16.0 | 1 × 10−3 | 16.0 |
7 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | False | 100 | ____ | ______ | _______ | _____ | _______ |
8 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 100 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
9 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 100 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
10 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 100 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
11 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | False | 250 | ____ | ______ | _______ | _____ | _______ |
12 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
13 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | False | 250 | ____ | ______ | _______ | _____ | _______ |
14 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
15 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | False | 250 | ____ | ______ | _______ | _____ | _______ |
16 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−2 | 64.0 |
17 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | False | 250 | ____ | ______ | _______ | _____ | _______ |
18 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 1.0 | 1 × 10−7 | 64.0 | 1 × 10−3 | 64.0 |
19 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
20 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 1.0 | 1 × 10−3 | 1.0 |
21 | 64 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 10.0 | 1 × 10−2 | 10.0 |
22 | 128 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 8.0 | 1 × 10−2 | 8.0 |
23 | 32 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 16.0 | 1 × 10−2 | 16.0 |
24 | 16 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 32.0 | 1 × 10−2 | 32.0 |
25 | 8 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 32.0 | 1 × 10−2 | 32.0 |
26 | 4 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 64.0 | 1 × 10−1 | 64.0 |
27 | 2 | 0.01 | 4.0 | 4.0 | MNIST | dense | True | 250 | 0.5 | 1 × 10−7 | 64.0 | 1 × 10−1 | 64.0 |
28 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
29 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 1.0 | 1 × 10−3 | 1.0 |
30 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 10.0 | 1 × 10−3 | 10.0 |
31 | 128 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 2.0 | 1 × 10−3 | 2.0 |
32 | 32 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 2.0 | 1 × 10−3 | 2.0 |
33 | 16 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−2 | 4.0 |
34 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 500 | 0.5 | 1 × 10−7 | 2.0 | 1 × 10−2 | 2.0 |
35 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 1000 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−2 | 4.0 |
36 | 64 | 0.01 | 4.0 | 4.0 | MNIST | cnn | True | 2000 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−2 | 4.0 |
37 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
38 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 1.0 | 1 × 10−3 | 1.0 |
39 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 10.0 | 1 × 10−3 | 10.0 |
40 | 128 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 32.0 | 1 × 10−3 | 32.0 |
41 | 32 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 64.0 | 1 × 10−2 | 64.0 |
42 | 16 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 64.0 | 1 × 10−2 | 64.0 |
43 | 8 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 64.0 | 1 × 10−1 | 64.0 |
44 | 4 | 0.01 | 4.0 | 4.0 | CIFAR-10 | dense | True | 250 | 0.5 | 1 × 10−7 | 128.0 | 1 × 10−1 | 128.0 |
45 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
46 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 0.5 | 1 × 10−7 | 1.0 | 1 × 10−3 | 1.0 |
47 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 0.5 | 1 × 10−7 | 10.0 | 1 × 10−3 | 10.0 |
48 | 128 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 0.5 | 1 × 10−7 | 2.0 | 1 × 10−3 | 2.0 |
49 | 32 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 250 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
50 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 500 | 0.5 | 1 × 10−7 | 4.0 | 1 × 10−3 | 4.0 |
51 | 64 | 0.01 | 4.0 | 4.0 | CIFAR-10 | cnn | True | 1000 | 0.5 | 1 × 10−7 | 8.0 | 1 × 10−2 | 8.0 |
BATCH_SIZE | DATASET | MODEL_TYPE | USE_PRIVACY | N_EPOCHS | EPS | MAX_EPS | MAX_DELTA | TARGET_EPS | TRAIN ACCURACY (%) | VALIDATION ACCURACY (%) | TESTING ACCURACY (%) | EPSILON USED | DELTA USED | TRAINNING TIME | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 64 | MNIST | dense | False | 100 | ___ | ___ | ____ | ___ | 96.33 | 96.44 | 96.68 | ___ | ____ | 0 h 26 m |
2 | 64 | MNIST | dense | True | 100 | 1.0 | 16.0 | 1 × 10−3 | 16.0 | 59.64 | 59.96 | 59.10 | 13.993 | 3.6839 × 10−4 | 0 h 57 m |
3 | 64 | MNIST | cnn | False | 100 | ___ | ___ | ____ | ____ | 98.21 | 98.22 | 99.54 | ____ | ___ | 1 h 48 m |
4 | 64 | MNIST | cnn | True | 100 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 76.60 | 77.39 | 72.68 | 2.29 | 1.2746 × 10−4 | 2 h 40 m |
5 | 64 | CIFAR-10 | dense | False | 100 | ____ | ____ | ____ | _____ | 51.21 | 51.37 | 63.89 | ____ | ______ | 0 h 25 m |
6 | 64 | CIFAR-10 | dense | True | 100 | 1.0 | 16.0 | 1 × 10−3 | 16.0 | 15.64 | 15.71 | 13.73 | 16.0 | 1.4989 × 10−4 | 0 h 15 m |
7 | 64 | CIFAR-10 | cnn | False | 100 | ___ | _____ | _____ | _____ | 62.46 | 62.52 | 88.25 | ____ | _______ | 2 h 0 m |
8 | 64 | CIFAR-10 | cnn | True | 100 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 25.12 | 25.38 | 24.72 | 3.7747 | 1.5798 × 10−4 | 2 h 12 m |
9 | 64 | MNIST | dense | True | 100 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 61.34 | 61.83 | 58.08 | 13.99 | 3.6839 × 10−4 | 0 h 55 m |
10 | 64 | CIFAR-10 | dense | True | 100 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 15.32 | 15.46 | 14.97 | 36.5621 | 7.9777 × 10−4 | 1 h 57 m |
11 | 64 | MNIST | dense | False | 250 | _____ | _____ | _____ | _____ | 97.27 | 97.29 | 98.49 | ______ | _______ | 0 h 34 m |
12 | 64 | MNIST | dense | True | 250 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 66.39 | 66.68 | 64.74 | 22.1849 | 9.1887 × 10−4 | 1 h 50 m |
13 | 64 | MNIST | cnn | False | 250 | _____ | _____ | _____ | _____ | 98.28 | 98.28 | 99.83 | ______ | _______ | 5 h 13 m |
14 | 64 | MNIST | cnn | True | 250 | 1.0 | 64.0 | 1 × 10−3 | 64.0 | 81.44 | 81.68 | 78.95 | 3.6135 | 3.1085 × 10−4 | 6 h 08 m |
15 | 64 | CIFAR-10 | dense | False | 250 | _____ | ______ | _____ | _____ | 52.59 | 52.61 | 80.59 | _____ | _______ | 6 h 0 m |
16 | 64 | CIFAR-10 | dense | True | 250 | 1.0 | 64.0 | 1 × 10−2 | 64.0 | 16.90 | 16.99 | 17.31 | 5.79335 | 1.99118 × 10−3 | 4 h 39 m |
17 | 64 | CIFAR-10 | cnn | False | 250 | ___ | ___ | ___ | ___ | 62.70 | 62.70 | 94.68 | ____ | ___ | 6 h 20 m |
18 | 64 | CIFAR-10 | cnn | True | 250 | 1.0 | 64.0 | 1 × 10−2 | 64.0 | 30.06 | 30.26 | 19.49 | 5.9733 | 8.3994 × 10−4 | 6 h 24 m |
19 | 64 | MNIST | dense | True | 250 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 54.52 | 54.60 | 57.98 | 4.0 | 2.0691 × 10−4 | 0 h 25 m |
20 | 64 | MNIST | dense | True | 250 | 0.5 | 1.0 | 1 × 10−3 | 1.0 | 23.62 | 22.66 | 37.71 | 1.0 | 1.2940 × 10−4 | 0 h 2 m |
21 | 64 | MNIST | dense | True | 250 | 0.5 | 10.0 | 1 × 10−2 | 10.0 | 67.72 | 67.49 | 66.10 | 8.4436 | 1.9570 × 10−4 | 1 h 59 m |
22 | 128 | MNIST | dense | True | 250 | 0.5 | 8.0 | 1 × 10−2 | 8.0 | 66.83 | 66.97 | 65.23 | 5.9668 | 4.6011 × 10−4 | 0 h 59 m |
23 | 32 | MNIST | dense | True | 250 | 0.5 | 16.0 | 1 × 10−2 | 16.0 | 69.59 | 72.11 | 72.33 | 11.9089 | 1.83497 × 10−3 | 3 h 50 m |
24 | 16 | MNIST | dense | True | 250 | 0.5 | 32.0 | 1 × 10−2 | 32.0 | 75.43 | 75.65 | 73.84 | 16.7136 | 3.6697 × 10−2 | 7 h 07 m |
25 | 8 | MNIST | dense | True | 250 | 0.5 | 32.0 | 1 × 10−2 | 32.0 | 78.80 | 78.94 | 77.17 | 23.7963 | 7.3353 × 10−2 | 8 h 09 m |
26 | 4 | MNIST | dense | True | 250 | 0.5 | 64.0 | 1 × 10−1 | 64.0 | 81.49 | 81.26 | 80.52 | 32.355 | 1.467053 × 10−2 | 28 h 3 m |
27 | 2 | MNIST | dense | True | 250 | 0.5 | 64.0 | 1 × 10−1 | 64.0 | 83.81 | 83.90 | 83.23 | 44.8134 | 2.933942 × 10−2 | 55 h 25 m |
28 | 64 | MNIST | cnn | True | 250 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 80.25 | 80.06 | 80.24 | 1.3608 | 3.1085 × 10−4 | 6 h 21 m |
29 | 64 | MNIST | cnn | True | 250 | 0.5 | 1.0 | 1 × 10−3 | 1.0 | 75.68 | 76.21 | 79.84 | 0.9996 | 1.6747 × 10−4 | 3 h 04 m |
30 | 64 | MNIST | cnn | True | 250 | 0.5 | 10.0 | 1 × 10−3 | 10.0 | 83.46 | 83.65 | 80.78 | 1.3608 | 3.1085 × 10−4 | 6 h 16 m |
31 | 128 | MNIST | cnn | True | 250 | 0.5 | 2.0 | 1 × 10−3 | 2.0 | 79.64 | 79.93 | 77.05 | 0.9655 | 1.5764 × 10−4 | 3 h 23 m |
32 | 32 | MNIST | cnn | True | 250 | 0.5 | 2.0 | 1 × 10−3 | 2.0 | 81.24 | 81.42 | 78.31 | 1.9207 | 6.3528 × 10−4 | 11 h 09 m |
33 | 16 | MNIST | cnn | True | 250 | 0.5 | 4.0 | 1 × 10−2 | 4.0 | 75.38 | 75.71 | 73.57 | 2.7538 | 1.24625 × 10−3 | 23 h 03 m |
34 | 64 | MNIST | cnn | True | 500 | 0.5 | 2.0 | 1 × 10−2 | 2.0 | 85.84 | 85.90 | 83.90 | 1.9208 | 6.3540 × 10−4 | 10 h 54 m |
35 | 64 | MNIST | cnn | True | 1000 | 0.5 | 4.0 | 1 × 10−2 | 4.0 | 85.84 | 85.90 | 83.80 | 2.7532 | 1.24579 × 10−3 | 22 h 47 m |
36 | 64 | MNIST | cnn | True | 2000 | 0.5 | 4.0 | 1 × 10−2 | 4.0 | 89.62 | 89.63 | 87.71 | 3.8095 | 2.52171 × 10−3 | 42 h 01 m |
37 | 64 | CIFAR-10 | dense | True | 250 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 12.53 | 11.82 | 10.45 | 4.0 | 6.215 × 10−5 | 0 h 9 m |
38 | 64 | CIFAR-10 | dense | True | 250 | 0.5 | 1.0 | 1 × 10−3 | 1.0 | 9.77 | 9.41 | 7.81 | 1.0 | 3.88 × 10−5 | 0 h 1 m |
39 | 64 | CIFAR-10 | dense | True | 250 | 0.5 | 10.0 | 1 × 10−3 | 10.0 | 13.67 | 13.66 | 13.99 | 10.0 | 3.8742 × 10−3 | 50 h 01 m |
40 | 128 | CIFAR-10 | dense | True | 250 | 0.5 | 32.0 | 1 × 10−3 | 32.0 | 16.12 | 16.14 | 16.20 | 16.0331 | 9.9818 × 10−4 | 2 h 15 m |
41 | 32 | CIFAR-10 | dense | True | 250 | 0.5 | 32.0 | 1 × 10−3 | 32.0 | 18.50 | 18.61 | 18.82 | 32.1464 | 4.02584 × 10−3 | 9 h 10 m |
42 | 16 | CIFAR-10 | dense | True | 250 | 0.5 | 64.0 | 1 × 10−2 | 64.0 | 20.33 | 20.39 | 20.62 | 45.4614 | 7.96743 × 10−3 | 15 h 50 m |
43 | 8 | CIFAR-10 | dense | True | 250 | 0.5 | 64.0 | 1 × 10−1 | 64.0 | 21.12 | 21.15 | 21.06 | 63.7962 | 1.560910 × 10−2 | 44 h 25 m |
44 | 4 | CIFAR-10 | dense | True | 250 | 0.5 | 128.0 | 1 × 10−1 | 128.0 | 22.31 | 22.36 | 22.24 | 91.1240 | 3.364267 × 10−2 | 68 h 13 m |
45 | 64 | CIFAR-10 | cnn | True | 250 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 29.59 | 29.69 | 30.16 | 2.2675 | 3.8994 × 10−3 | 6 h 09 m |
46 | 64 | CIFAR-10 | cnn | True | 250 | 0.5 | 1.0 | 1 × 10−3 | 1.0 | 24.51 | 22.87 | 23.03 | 1.0 | 7.617 × 10−5 | 1 h 21 m |
47 | 64 | CIFAR-10 | cnn | True | 250 | 0.5 | 10.0 | 1 × 10−3 | 10.0 | 29.14 | 29.25 | 29.04 | 2.2675 | 3.8994 × 10−3 | 1 h 0 m |
48 | 128 | CIFAR-10 | cnn | True | 250 | 0.5 | 2.0 | 1 × 10−3 | 2.0 | 29.64 | 29.87 | 29.39 | 1.6026 | 1.9852 × 10−4 | 2 h 59 m |
49 | 32 | CIFAR-10 | cnn | True | 250 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 19.54 | 19.54 | 19.89 | 3.1539 | 7.7702 × 10−4 | 11 h 26 m |
50 | 64 | CIFAR-10 | cnn | True | 500 | 0.5 | 4.0 | 1 × 10−3 | 4.0 | 31.23 | 31.26 | 31.29 | 3.1524 | 7.7616 × 10−4 | 12 h 03 m |
51 | 64 | CIFAR-10 | cnn | True | 1000 | 0.5 | 8.0 | 1 × 10−2 | 8.0 | 32.30 | 32.30 | 32.06 | 4.4014 | 1.66101 × 10−3 | 23 h 31 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, P.; Limniotis, K. Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges. Network 2024, 4, 91-113. https://doi.org/10.3390/network4010005
Christodoulou P, Limniotis K. Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges. Network. 2024; 4(1):91-113. https://doi.org/10.3390/network4010005
Chicago/Turabian StyleChristodoulou, Paraskevi, and Konstantinos Limniotis. 2024. "Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges" Network 4, no. 1: 91-113. https://doi.org/10.3390/network4010005
APA StyleChristodoulou, P., & Limniotis, K. (2024). Data Protection Issues in Automated Decision-Making Systems Based on Machine Learning: Research Challenges. Network, 4(1), 91-113. https://doi.org/10.3390/network4010005