Confronting Accelerating Global Antimicrobial Resistance and the Associated Increase in Deaths
Abstract
:1. Introduction
2. New Targets and MOAs
3. Conclusions
Funding
Conflicts of Interest
References
- Watkins, R.R.; Bonomo, R.A. The ongoing threat of antimicrobial resistance. Infect. Dis. Clin. N Am. 2020, 34, xiii–xiv. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J. The Review on Antimicrobial Resistance, “Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations”. Available online: https://amr-review.org (accessed on 15 July 2024).
- Amsterdam, D.; Stratton, C.W. Intersection of drug development, challenges of antimicrobial resistance and predicting antimicrobial efficacy. In Antibiotics in Laboratory Medicine, 6th ed.; Amsterdam, D., Ed.; Publisher Wolters Kluwer: Philadelphia, PA, USA, 2015; pp. 1–8. [Google Scholar]
- D’Costa, V.M.; King, C.E.; Kalan, L.; Morar, M.; Sung, W.W.L.; Schwarz, C.; Froese, D.; Zazula, G.; Calmels, F.; Debruyne, R.; et al. Antibiotic resistance is ancient. Nature 2011, 477, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.-Y.; Yu, D.; Fan, M.-M.; Zhang, X.; Jin, Z.-Y.; Tang, C. Antimicrobial resistance crisis: Could artificial intelligence be the solution? Mil. Med. Res. 2024, 11, 7. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Financial Model for an Impact Investment Fund for the Development of Antibacterial Treatments and Diagnostics. A Users’ Guide. 2020. Available online: https://www.who.int/publications/i/item/a-financial-model-for-an-impact-investment-fund-for-the-development-of-antibacterial-treatments-and-diagnostics-a-user-guide (accessed on 1 June 2024).
- Amsterdam, D. Perspective: Limiting antimicrobial resistance with artificial intelligence/machine learning. BMEF 2023, 4, 0033. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, J.D.; Hodgkinson, T.; Thomas, A.M.; Tanwar, O.; La Monica, G.; Rogga, V.V.; Mackay, L.J.; Taylor, E.K.; Gilbert, K.; Zhu, Y.; et al. Development of an inhibitor of the mutagenic SOS response that suppresses the evolution of quinolone antibiotic resistance. Chem. Sci. 2024, 15, 9620–9629. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, K.A.; Ulrich, R.J.; Vasan, A.K.; Sinclair, M.; Wen, P.-C.; Holmes, J.R.; Lee, H.Y.; Hung, C.-C.; Fields, C.J.; Tajkhorshid, E.; et al. A gram-negative selective antibiotic that spares the gut microbiome. Nature 2024, 630, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.J.Y.; Tresco, B.I.C.; Ramkissoon, A.; Aleksandrova, E.V.; Syroegin, E.A.; See, D.N.Y.; Liow, P.; Dittemore, G.A.; Yu, M.; Testolin, G.; et al. An antibiotic preorganized for ribosomal binding overcomes antimicrobial resistance. Science 2024, 6684, 721. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Wei, J.; Jiang, L.; Sun, Y.; Zeng, Z.; Wang, Z. Phage-inspired strategies to combat antibacterial resistance. Crit. Rev. Microbiol. 2024, 50, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol. 2019, 4, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Guillen, M.N.; Li, C.; Rosener, B.; Mitchell, A. Antibacterial activity of nonantibiotics is orthogonal to standard antibiotics. Science 2024, 384, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.; Johnson, A.P.; Ashiru-Oredope, D.; Sharland, M. Using antibiotics responsibly: Right drug, right time, right dose, right duration. Antimicrob. Chemo. 2011, 66, 2441–2443. [Google Scholar] [CrossRef] [PubMed]
Advance | Description | References |
---|---|---|
AI/ML |
| [6] |
[8] | ||
Antimicrobials with unique MOAs |
| [9] |
[10] | ||
[11] | ||
Antibacterial viruses |
| [12] |
ML |
| [13,14] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsterdam, D. Confronting Accelerating Global Antimicrobial Resistance and the Associated Increase in Deaths. BioMed 2024, 4, 314-317. https://doi.org/10.3390/biomed4030025
Amsterdam D. Confronting Accelerating Global Antimicrobial Resistance and the Associated Increase in Deaths. BioMed. 2024; 4(3):314-317. https://doi.org/10.3390/biomed4030025
Chicago/Turabian StyleAmsterdam, Daniel. 2024. "Confronting Accelerating Global Antimicrobial Resistance and the Associated Increase in Deaths" BioMed 4, no. 3: 314-317. https://doi.org/10.3390/biomed4030025
APA StyleAmsterdam, D. (2024). Confronting Accelerating Global Antimicrobial Resistance and the Associated Increase in Deaths. BioMed, 4(3), 314-317. https://doi.org/10.3390/biomed4030025