Definition
Immersive methods and biometric tools provide a rigorous, context-rich way to study how people perceive and choose food. Immersive methods use extended reality, including virtual, augmented, mixed, and augmented virtual environments, to recreate settings such as homes, shops, and restaurants. They increase participants’ sense of presence and the ecological validity (realism of conditions) of experiments, while still tightly controlling sensory and social cues like lighting, sound, and surroundings. Biometric tools record objective signals linked to attention, emotion, and cognitive load via sensors such as eye-tracking, galvanic skin response (GSR), heart rate (and variability), facial electromyography, electroencephalography, and functional near-infrared spectroscopy. Researchers align stimuli presentation, gaze, and physiology on a common temporal reference and link these data to outcomes like liking, choice, or willingness-to-buy. This approach reveals implicit responses that self-reports may miss, clarifies how changes in context shift perception, and improves predictive power. It enables faster, lower-risk product and packaging development, better-informed labeling and retail design, and more targeted nutrition and health communication. Good practices emphasize careful system calibration, adequate statistical power, participant comfort and safety, robust data protection, and transparent analysis. In food science and consumer behavior, combining immersive environments with biometrics yields valid, reproducible evidence about what captures attention, creates value, and drives food choice.