Cardiac Surgery-Associated Acute Kidney Injury in Children after Cardiopulmonary Bypass
Abstract
:1. Introduction
2. Risk Factors
3. Epidemiology of CSA-AKI in Children
4. Pathology of CSA-AKI
5. Diagnostics of CSA-AKI in Children
6. CSA-AKI Treatment in Children
7. Prevention of CSA-AKI in Children
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LoBasso, M.; Schneider, J.; Sanchez-Pinto, L.N.; Del Castillo, S.; Kim, G.; Flynn, A.; Sethna, C.B. Acute kidney injury and kidney recovery after cardiopulmonary bypass in children. Pediatr. Nephrol. 2021, 37, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Van den Eynde, J.; Rotbi, H.; Gewillig, M.; Kutty, S.; Allegaert, K.; Mekahli, D. In-Hospital Outcomes of Acute Kidney Injury After Pediatric Cardiac Surgery: A Me-ta-Analysis. Front. Pediatr. 2021, 9, 733744. [Google Scholar] [CrossRef] [PubMed]
- Polushin, Y.S.; Dreval, R.O.; Zabotina, A.N. Clinical and economic assessment of the therapy of acute kidney injury in sepsis with continuous combined methods of renal replacement therapy. Messenger Anesthesiol. Resusc. 2021, 18, 7–20. [Google Scholar] [CrossRef]
- Eynde, J.V.D.; Salaets, T.; Louw, J.J.; Herman, J.; Breysem, L.; Vlasselaers, D.; Desmet, L.; Meyns, B.; Budts, W.; Gewillig, M.; et al. Persistent Markers of Kidney Injury in Children Who Developed Acute Kidney Injury After Pediatric Cardiac Surgery: A Prospective Cohort Study. J. Am. Heart Assoc. 2022, 11, e024266. [Google Scholar] [CrossRef] [PubMed]
- Eynde, J.V.D.; Delpire, B.; Jacquemyn, X.; Pardi, I.; Rotbi, H.; Gewillig, M.; Kutty, S.; Mekahli, D. Risk factors for acute kidney injury after pediatric cardiac surgery: A meta-analysis. Pediatr. Nephrol. 2021, 37, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Zappitelli, M. Preoperative prediction of acute kidney injury—From clinical scores to biomarkers. Pediatr. Nephrol. 2012, 28, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Cantais, A.; Hammouda, Z.; Mory, O.; Patural, H.; Stephan, J.-L.; Gulyaeva, L.; Darmon, M. Incidence of contrast-induced acute kidney injury in a pediatric setting: A cohort study. Pediatr. Nephrol. 2016, 31, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Krawczeski, C.D. Cardiopulmonary Bypass and AKI: AKI Is Bad, So Let’s Get Beyond the Diagnosis. Front. Pediatr. 2019, 7, 492. [Google Scholar] [CrossRef]
- Cho, H. Pediatric Hemodialysis. Child Kidney Dis. 2020, 24, 2. [Google Scholar] [CrossRef]
- Borisenko, D.V.; Ivkin, A.A.; Shukevich, D.L.; Kornelyuk, R.A. The Effect of Erythrocyte-Containing Donor Blood Components in the Priming of the Cardiopulmonary Bypass Circuit on the Development of Systemic Inflammation During Correction of Congenital Heart Defects in Children. Gen. Reanimatol. 2022, 18, 30–37. [Google Scholar] [CrossRef]
- Jiang, W.; Teng, J.; Xu, J.; Shen, B.; Wang, Y.; Fang, Y.; Zou, Z.; Jin, J.; Zhuang, Y.; Liu, L.; et al. Dynamic Predictive Scores for Cardiac Surgery–Associated Acute Kidney Injury. J. Am. Heart Assoc. 2016, 5, e003754. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.N.; Hsieh, L.; Kajimoto, M.; Charette, K.; Kibiryeva, N.; Forero, A.; Nigam, V. Shear stress associated with cardiopulmonary bypass induces expression of inflammatory cyto-kines and necroptosis in monocytes. JCI Insight 2021, 6, e141341. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.B.; Lou, J.S.; Ren, Y.; Miao, C.H.; Deng, X.M. Gene expression profiling reveals the defining features of monocytes from septic patients with compensatory anti-inflammatory response syndrome. J. Infect. 2012, 65, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Mlejnsky, F.; A Klein, A.; Lindner, J.; Maruna, P.; Kvasnicka, J.; Kvasnicka, T.; Zima, T.; Pecha, O.; Lips, M.; Rulisek, J.; et al. A randomised controlled trial of roller versus centrifugal cardiopulmonary bypass pumps in patients undergoing pulmonary endarterectomy. Perfusion 2014, 30, 520–528. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, W.I.C.; de Wit, N.C.; Sertorio, J.T.; van Bijnen, A.A.; Ganushchak, Y.M.; Heijmans, J.H.; Tanus-Santos, J.E.; Jacobs, M.J.; Maessen, J.G.; Buurman, W.A. Hemolysis during cardiac surgery is associated with increased intravascular nitric oxide consumption and perioperative kidney and intestinal tissue damage. Front. Physiol. 2014, 5, 340. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Rezoagli, E.; Zadek, F.; Bittner, E.A.; Lei, C.; Berra, L. Free Hemoglobin Ratio as a Novel Biomarker of Acute Kidney Injury After On-Pump Cardiac Surgery: Secondary Analysis of a Randomized Controlled Trial. Obstet. Anesthesia Dig. 2021, 132, 1548–1558. [Google Scholar] [CrossRef] [PubMed]
- Jordan, J.; Zhao, Z.; Vinten-Johansen, J. The role of neutrophils in myocardial ischaemia–reperfusion injury. Cardiovasc. Res. 1999, 43, 860–878. [Google Scholar] [CrossRef] [PubMed]
- Rehm, M.; Bruegger, D.; Christ, F.; Conzen, P.; Thiel, M.; Jacob, M.; Becker, B.F. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischaemia. Circulation 2007, 116, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Young, R.W. Hyperoxia: A Review of the Risks and Benefits in Adult Cardiac Surgery. J. Extracorpor. Technol. 2012, 44, 241–249. [Google Scholar] [CrossRef]
- Bae, J.; Kim, J.; Lee, S.; Ju, J.W.; Cho, Y.J.; Kim, T.K.; Nam, K. Association between intraoperative hyperoxia and acute kidney injury after cardiac surgery: A retro-spective observational study. J. Cardiothorac Vasc Anesth. 2021, 35, 2405–2414. [Google Scholar] [CrossRef]
- Lex, D.J.; Tóth, R.; Cserép, Z.; Alexander, S.I.; Breuer, T.; Sápi, E.; Szatmári, A.; Székely, E.; Gál, J.; Székely, A. A Comparison of the Systems for the Identification of Postoperative Acute Kidney Injury in Pediatric Cardiac Patients. Ann. Thorac. Surg. 2014, 97, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Seki, S.; Shiokawa, N.; Matsuba, T.; Miyazono, A.; Hazeki, D.; Imoto, Y.; Kawano, Y. Validation of acute kidney injury according to the modified KDIGO criteria in infants after cardiac surgery for congenital heart disease. Nephrology 2018, 24, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Ruf, B.; Bonelli, V.; Balling, G.; Hörer, J.; Nagdyman, N.; Braun, S.L.; Ewert, P.; Reiter, K. Intraoperative renal near-infrared spectroscopy indicates developing acute kidney injury in infants undergoing cardiac surgery with cardiopulmonary bypass: A case–control study. Crit. Care 2015, 19, 27. [Google Scholar] [CrossRef] [PubMed]
- Cherry, A.D.; Hauck, J.N.; Andrew, B.Y.; Li, Y.-J.; Privratsky, J.R.; Kartha, L.D.; Nicoara, A.; Thompson, A.; Mathew, J.P.; Stafford-Smith, M. Intraoperative renal resistive index threshold as an acute kidney injury biomarker. J. Clin. Anesthesia 2020, 61, 109626. [Google Scholar] [CrossRef] [PubMed]
- Abosamak, M.F.; Lippi, G.; Benoit, S.W.; Henry, B.M.; Shama, A.A.A. Bladder urine oxygen partial pressure monitoring: Could it be a tool for early detection of acute kidney injury? Egypt J. Anaesth. 2021, 37, 43–49. [Google Scholar] [CrossRef]
- Goldani, J.C.; Poloni, J.A.; Klaus, F.; Kist, R.; Pacheco, L.S.; Keitel, E. Urine microscopy as a biomarker of Acute Kidney Injury following cardiac surgery with cardiopulmonary bypass. Braz. J. Nephrol. 2020, 42, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Schinstock, C.A.; Semret, M.H.; Wagner, S.J.; Borland, T.M.; Bryant, S.C.; Kashani, K.B.; Larson, T.S.; Lieske, J.C. Urinalysis is more specific and urinary neutrophil gelatinase-associated lipocalin is more sensitive for early detection of acute kidney injury. Nephrol. Dial. Transplant. 2012, 28, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Bagshaw, S.M.; Gibney, R.T. Acute kidney injury: Clinical value of urine microscopy in acute kidney injury. Nat. Rev. Nephrol. 2009, 5, 185–186. [Google Scholar] [CrossRef] [PubMed]
- Tumer, N.B.; Tekeli, K.A.; Gunaydin, S. Preoperative Urinary pH is Associated with Acute Kidney Injury After Cardiac Sur-gery in Non-Diabetic Patients. Heart Surg. Forum. 2019, 22, 456–461. [Google Scholar] [CrossRef]
- Toda, Y.; Kentaro, S. AKI after pediatric cardiac surgery for congenital heart diseases-recent developments in diagnostic cri-teria and early diagnosis by biomarkers. J. Intensive Care 2017, 5, 49. [Google Scholar] [CrossRef]
- Passov, A.; Petäjä, L.; Pihlajoki, M.; Salminen, U.-S.; Suojaranta, R.; Vento, A.; Andersson, S.; Pettilä, V.; Schramko, A.; Pesonen, E. The origin of plasma neutrophil gelatinase-associated lipocalin in cardiac surgery. BMC Nephrol. 2019, 20, 182. [Google Scholar] [CrossRef]
- Hoenderdos, K.; Lodge, K.M.; A Hirst, R.; Chen, C.; Palazzo, S.G.C.; Emerenciana, A.; Summers, C.; Angyal, A.; Porter, L.; Juss, J.K.; et al. Hypoxia upregulates neutrophil degranulation and potential for tissue injury. Thorax 2016, 71, 1030–1038. [Google Scholar] [CrossRef] [PubMed]
- Elmas, A.; Ipek, S.; Karadag, A.; Elmas, O.; Ozyalin, F.; Tabel, Y. Urinary Neutrophil Gelatinase-Associated Lipocalin as an Early Biomarker for Prediction of Acute Kidney Injury in Preterm Infants. Am. J. Perinatol. 2013, 31, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Krawczeski, C.D.; Woo, J.G.; Wang, Y.; Bennett, M.R.; Ma, Q.; Devarajan, P. Neutrophil Gelatinase-Associated Lipocalin Concentrations Predict Development of Acute Kidney Injury in Neonates and Children after Cardiopulmonary Bypass. J. Pediatr. 2011, 158, 1009–1015.e1. [Google Scholar] [CrossRef]
- Kamianowska, M.; Szczepański, M.; E Kulikowska, E.; Bebko, B.; Wasilewska, A. Do serum and urinary concentrations of kidney injury molecule-1 in healthy newborns depend on birth weight, gestational age or gender? J. Perinatol. 2016, 37, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Borchert, E.; de la Fuente, R.; Guzmán, A.M.; González, K.; Rolle, A.; Morales, K.; Lema, G. Biomarkers as predictors of renal damage in neonates undergoing cardiac surgery. Perfusion 2021, 36, 825–831. [Google Scholar] [CrossRef] [PubMed]
- Nikitin, E.Y.; Drozdov, V.N.; Vyzhigina, M.A.; Vorobieva, O.A.; Astapovskiy, A.A.; Khalaidzheva, K.N.; Shikh, E.V. Prospects for the Use of NGAL and KIM-1 for the Diagnosis of Acute Kidney Injury in Patients Receiving Antibacterial Therapy. Messenger Anesthesiol. Resusc. 2022, 19, 44–51. [Google Scholar] [CrossRef]
- Dong, L.; Ma, Q.; Bennett, M.; Devarajan, P. Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr. Nephrol. 2017, 32, 2351–2360. [Google Scholar] [CrossRef]
- Khan, M.B.; Naseem, T.; Wazir, H.D.; Ayyub, A.; bin Saad, A.; Irshad, R. Association Of Liver Fatty Acid Binding Protein With Acute Kidney Injury In Paediatric Pa-tients After Cardiac Surgery. J. Ayub Med. Coll. Abbottabad Pak. 2022, 34, 602–607. [Google Scholar]
- Yoneyama, F.; Okamura, T.; Takigiku, K.; Yasukouchi, S. Novel Urinary Biomarkers for Acute Kidney Injury and Prediction of Clinical Outcomes After Pediatric Cardiac Surgery. Pediatric Cardiol. 2020, 41, 695–702. [Google Scholar] [CrossRef]
- Hazle, M.A.; Gajarski, R.J.; Aiyagari, R.; Yu, S.; Abraham, A.; Donohue, J.; Blatt, N.B. Urinary biomarkers and renal near-infrared spectroscopy predict intensive care unit out-comes after cardiac surgery in infants younger than 6 months of age. J. Thorac. Cardiovasc. Surg. 2013, 146, 861–867. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Xiao, Y.Y.; Yao, Y.; Han, L. Is serum cystatin C an early predictor for acute kidney injury following cardiopulmonary bypass surgery in infants and young children? Kaohsiung J. Med. Sci. 2013, 29, 494–499. [Google Scholar] [CrossRef]
- Cavalcante, C.T.d.M.B.; Cavalcante, M.B.; Branco, K.M.P.C.; Chan, T.; Maia, I.C.L.; Pompeu, R.G.; Telles, A.C.d.O.; Brito, A.K.M.; Libório, A.B. Biomarkers of acute kidney injury in pediatric cardiac surgery. Pediatr. Nephrol. 2021, 37, 61–78. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.H.; Zappitelli, M.; Jia, Y.; Thiessen-Philbrook, H.R.; de Fontnouvelle, C.A.; Wilson, F.P.; Coca, S.; Devarajan, P.; Parikh, C.R. Biomarkers of AKI Progression after Pediatric Cardiac Surgery. J. Am. Soc. Nephrol. 2018, 29, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Meersch, M.; Schmidt, C.; Van Aken, H.; Martens, S.; Rossaint, J.; Singbartl, K.; Görlich, D.; Kellum, J.A.; Zarbock, A. Urinary TIMP-2 and IGFBP7 as Early Biomarkers of Acute Kidney Injury and Renal Recovery following Cardiac Surgery. PLoS ONE 2014, 9, e93460. [Google Scholar] [CrossRef]
- Bennett, M.R.; Nehus, E.; Haffner, C.; Ma, Q.; Devarajan, P. Pediatric reference ranges for acute kidney injury biomarkers. Pediatr. Nephrol. 2014, 30, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.H.; Parikh, C.R. Biomarkers for Diagnosis and Prognosis of AKI in Children: One Size Does Not Fit All. Clin. J. Am. Soc. Nephrol. 2017, 12, 1551–1557. [Google Scholar] [CrossRef]
- Bennett, M.; Dent, C.L.; Ma, Q.; Dastrala, S.; Grenier, F.; Workman, R.; Devarajan, P. Urine NGAL predicts severity of acute kidney injury after cardiac surgery: A prospective study. Clin. J. Am. Soc. Nephrol. 2008, 3, 665–673. [Google Scholar] [CrossRef]
- Alcaraz, A.J.; Gil-Ruiz, M.A.; Castillo, A.; López, J.; Romero, C.; Fernández, S.N.; Carrillo, Á. Postoperative Neutrophil Gelatinase–Associated Lipocalin Predicts Acute Kidney Injury After Pediatric Cardiac Surgery*. Pediatr. Crit. Care Med. 2014, 15, 121–130. [Google Scholar] [CrossRef]
- Cantinotti, M.; Storti, S.; Lorenzoni, V.; Arcieri, L.; Moschetti, R.; Murzi, B.; Spadoni, I.; Passino, C.; Clerico, A. The combined use of neutrophil gelatinase-associated lipocalin and brain natriuretic peptide improves risk stratification in pediatric cardiac surgery. Clin. Chem. Lab. Med. 2012, 50, 2009–2017. [Google Scholar] [CrossRef]
- Mishra, J.; Dent, C.; Tarabishi, R.; Mitsnefes, M.M.; Ma, Q.; Kelly, C.; Devarajan, P. Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after car-diac surgery. Lancet 2005, 365, 1231–1238. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Xiao, Y.; Yao, Y.; Xu, G.; Li, C.; Zhang, Q.; Han, L. Comparison of urinary biomarkers for early detection of acute kidney injury after cardiopulmo-nary bypass surgery in infants and young children. Pediatr. Cardiol. 2013, 34, 880–886. [Google Scholar] [CrossRef] [PubMed]
- Fadel, F.I.; Rahman, A.M.A.; Mohamed, M.F.; Habib, S.A.; Ibrahim, M.H.; Sleem, Z.S.; Soliman, M.M. Plasma neutrophil gelatinase-associated lipocalin as an early biomarker for predic-tion of acute kidney injury after cardio-pulmonary bypass in pediatric cardiac surgery. Arch. Med. Sci. 2012, 8, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Dent, C.L.; Ma, Q.; Dastrala, S.; Bennett, M.; Mitsnefes, M.M.; Barasch, J.; Devarajan, P. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: A prospective uncontrolled cohort study. Crit. Care 2007, 11, R127–R128. [Google Scholar] [CrossRef] [PubMed]
- Parikh, C.; Mishra, J.; Thiessen-Philbrook, H.; Dursun, B.; Ma, Q.; Kelly, C.; Dent, C.; Devarajan, P.; Edelstein, C. Urinary IL-18 is an early predictive biomarker of acute kidney injury after cardiac surgery. Kidney Int. 2006, 70, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Bellomo, R.; Devarajan, P.; Schlattmann, P.; Haase-Fielitz, A.; NGAL Meta-Analysis Investigator Group. Accuracy of Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-analysis. Am. J. Kidney Dis. 2009, 54, 1012–1024. [Google Scholar] [CrossRef]
- Trachtman, H.; Investigators of the HUS-SYNSORB Pk Multicenter Clinical Trial; Christen, E.; Cnaan, A.; Patrick, J.; Mai, V.; Mishra, J.; Jain, A.; Bullington, N.; Devarajan, P. Urinary neutrophil gelatinase-associated lipocalcin in D+HUS: A novel marker of renal injury. Pediatr. Nephrol. 2006, 21, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Zappitelli, M.; Washburn, K.K.; A Arikan, A.; Loftis, L.; Ma, Q.; Devarajan, P.; Parikh, C.R.; Goldstein, S.L. Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: A prospective cohort study. Crit. Care 2007, 11, R84. [Google Scholar] [CrossRef] [PubMed]
- Foote, H.P.; Hornik, C.P.; Hill, K.D.; Rotta, A.T.; Chamberlain, R.; Thompson, E.J. A systematic review of the evidence supporting post-operative diuretic use following car-diopulmonary bypass in children with Congenital Heart Disease. Cardiol. Young 2021, 31, 699–706. [Google Scholar] [CrossRef]
- Kwiatkowski, D.M.; Goldstein, S.L.; Cooper, D.S.; Nelson, D.P.; Morales, D.L.; Krawczeski, C.D. Peritoneal Dialysis vs. Furosemide for Prevention of Fluid Overload in Infants After Cardiac Surgery: A Randomized Clinical Trial. JAMA Pediatr. 2017, 171, 357–364. [Google Scholar] [CrossRef]
- Pettit, K.A.; Schreiter, N.A.; Lushaj, E.B.; Hermsen, J.L.; Wilhelm, M.; Mahon, A.C.R.; Anagnostopoulos, P.V. Prophylactic Peritoneal Drainage is Associated with Improved Fluid Output after Con-genital Heart Surgery. Pediatr. Cardiol. 2020, 41, 1704–1713. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, L.; Liu, G.J.; Fu, P. Peritoneal dialysis for acute kidney injury. Emergencias 2015, 2, CD011457. [Google Scholar] [CrossRef]
- John, J.C.; Taha, S.; Bunchman, T.E. Basics of continuous renal replacement therapy in paediatrics. Kidney Res. Clin. Pract. 2019, 38, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, K.R.; Harshman, L.A. Renal replacement therapies for infants and children in the ICU. Curr. Opin. Pediatr. 2020, 32, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Shin, J.I. Overview of Pediatric Continuous Renal Replacement Therapy in AKI. Kidney Res. Clin. Pract. 2011, 15, 107–115. [Google Scholar]
- Pichugin, V.V.; Bautin, A.E.; Domnin, S.E.; Ryazanov, M.V.; Sandalkin, E.V. Delivery of Gaseous Nitric Oxide to the Extracorporeal Circulation Circuit: Experimental and Clinical Data: A review. Ann. Crit. Care 2021, 3, 108–116. [Google Scholar] [CrossRef]
Biomarker | Upper Limit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Age | ||||||||||
3–5 y.o. | 5–10 y.o. | 10–15 y.o. | 15–18 y.o. | On Average | ||||||
M | F | M | F | M | F | M | F | M | F | |
NGAL, ng/mL | 26.1 | 52.2 | 10.9 | 139.5 | 25.5 | 72.3 | 50 | 138.6 | 28.3 | 73.1 |
IL-18, pg/mL | 78.3 | 100.5 | 41.7 | 79 | 58.5 | 111.1 | 71.2 | 273.1 | 56.1 | 104.5 |
KIM-1, pg/mL | 983.7 | 1291.7 | 1276.6 | 1212.9 | 1156.6 | 1103.5 | 1877.3 | 1934.5 | 1298.4 | 1444.7 |
L-FABP, ng/mL | 49.4 | 41.4 | 15.5 | 13.5 | 13.7 | 13.3 | 10.5 | 6.7 | 15.5 | 18.6 |
Biomarker | Substrate | Time after Surgery | Source | Cutoff Values | |
---|---|---|---|---|---|
Before 28 Days of Life | After 28 Days of Life | ||||
NGAL, ng/mL | Serum | 2 h | Krawczeski et al. [34] | 100 | 50 |
Urine | 2 h | 185 | |||
2 h | Greenberg et al. [47] | 185 | 50 | ||
2 h | Bennett et al. [48] | 100 | |||
3 h | Alcaraz et al. [49] | 75 | |||
2 h | Cantinotti et al. [50] | 50 | |||
Mishra et al. [51] | |||||
4 h | Zheng et al. [52] | 54 | |||
ICU admission | Yoneyama et al. [40] | 40 | |||
4 h | 70 | ||||
Serum | 2 h | Fadel et al. [53] | 100 | ||
2 h | Dent et al. [54] | 150 | |||
IL-18, pg/mL | Urine | 4 h | Zheng et al. [52] | 49 | |
6 h | Greenberg et al. [47] | 362 | |||
12 h | Parikh et al. [55] | 234 | |||
KIM-1, pg/mL | Urine | 6 h | Greenberg et al. [47] | 0.99 | |
L-FABP, ng/mL | Urine | 6 h | Cavalcante et al. [43] | 69.1 | |
ICU admission | Yoneyama et al. [40] | 90 | |||
4 h | 155 | ||||
TIMP2x IGFBP7 | Urine | 4 h | Cavalcante et al. [43] | 0.47 |
Parameter | Flow | Source |
---|---|---|
Blood pump | 3–5 mL/kg/min | Cho et al. [9], John et al. [63] |
Dialysis solution | 1.5–2 times blood flow | Sanderson et al. [64] |
500 mL/kg/h | Cho et al. [9] | |
2000 mL/h/1.73 m2 | Park et al. [65], John et al. [63] | |
2000–8000 mL/h/1.73 m2 | Sanderson et al. [64] | |
20–60 mL/kg/h | Park et al. [65] | |
Substitute solution | 2000 mL/h/1.73 m2 | Park et al. [65], John et al. [63] |
20–60 mL/kg/h | Park et al. [65] | |
Ultrafiltration | No more than 0.2 mL/kg/min | Cho et al. [9] |
0.5–2 mL/kg/h | John et al. [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balakhnin, D.; Chermnykh, I.; Ivkin, A.; Grigoriev, E. Cardiac Surgery-Associated Acute Kidney Injury in Children after Cardiopulmonary Bypass. Kidney Dial. 2024, 4, 116-125. https://doi.org/10.3390/kidneydial4020009
Balakhnin D, Chermnykh I, Ivkin A, Grigoriev E. Cardiac Surgery-Associated Acute Kidney Injury in Children after Cardiopulmonary Bypass. Kidney and Dialysis. 2024; 4(2):116-125. https://doi.org/10.3390/kidneydial4020009
Chicago/Turabian StyleBalakhnin, Dmitrii, Ilya Chermnykh, Artem Ivkin, and Evgeny Grigoriev. 2024. "Cardiac Surgery-Associated Acute Kidney Injury in Children after Cardiopulmonary Bypass" Kidney and Dialysis 4, no. 2: 116-125. https://doi.org/10.3390/kidneydial4020009
APA StyleBalakhnin, D., Chermnykh, I., Ivkin, A., & Grigoriev, E. (2024). Cardiac Surgery-Associated Acute Kidney Injury in Children after Cardiopulmonary Bypass. Kidney and Dialysis, 4(2), 116-125. https://doi.org/10.3390/kidneydial4020009