Challenges in Management of Diabetic Patient on Dialysis
Abstract
:1. Introduction
2. Mortality, Cardiovascular Events
2.1. Metabolic Factors
2.2. Dialysis Modality
2.3. Primary and Secondary Cardiovascular Prevention
3. Vascular Access
4. Haemodynamic Instability during Dialysis
5. Glycaemic Control and Drug Adjustments after Starting on Dialysis
6. Fluid Management in Diabetic Dialysis Patients
7. Nutritional Considerations
8. Quality of Life Measures
9. MDT Approach to Diabetic Dialysis Patients
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Lee, K.; Ni, Z.; He, J.C. Diabetic kidney disease: Challenges, advances, and opportunities. Kidney Dis. 2020, 6, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Klinger, M.; Madziarska, K. Mortality predictor pattern in Hemodialysis and peritoneal dialysis in diabetic patients. Adv. Clin. Exp. Med. 2019, 28, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Rhee, C.M.; Leung, A.M.; Kovesdy, C.P.; Lynch, K.E.; Brent, G.A.; Kalantar-Zadeh, K. Updates on the management of diabetes in dialysis patients. Semin. Dial. 2014, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Meerwaldt, R.; Links, T.; Zeebregts, C.; Tio, R.; Hillebrands, J.-L.; Smit, A. The clinical relevance of assessing advanced glycation endproducts accumulation in diabetes. Cardiovasc. Diabetol. 2008, 7, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meerwaldt, R.; Hartog, J.W.; Graaff, R.; Huisman, R.J.; Links, T.P.; Hollander, N.C.D.; Thorpe, V.; Baynes, J.W.; Navis, G.; Gans, R.; et al. Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in Hemodialysis patients. J. Am. Soc. Nephrol. 2005, 16, 3687–3693. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, N.J.; Chesterton, L.J.; John, S.G.; Jefferies, H.J.; Burton, J.O.; Taal, M.W.; Fluck, R.J.; McIntyre, C.W. Tissue-advanced glycation end product concentration in dialysis patients. Clin. J. Am. Soc. Nephrol. 2010, 5, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Varikasuvu, S.R.; Aloori, S.; Bhongir, A.V. Higher skin autofluorescence detection using AGE-Reader™ technology as a measure of increased tissue accumulation of advanced glycation end products in dialysis patients with diabetes: A meta-analysis. J. Artif. Organs 2021, 24, 44–57. [Google Scholar] [CrossRef]
- Tangwonglert, T.; Vareesangthip, K.; Vongsanim, S.; Davenport, A. Comparison of skin autofluorescence, a marker of tissue advanced glycation end-products in the fistula and non-fistula arms of patients treated by Hemodialysis. Artif. Organs 2020, 44, 1224–1227. [Google Scholar] [CrossRef]
- Hörner, D.V.; Selby, N.M.; Taal, M.W. The association of nutritional factors and skin autofluorescence in persons receiving Hemodialysis. J. Ren. Nutr. 2019, 29, 149–155. [Google Scholar] [CrossRef]
- Hörner, D.V.; Selby, N.M.; Taal, M.W. Factors associated with change in skin autofluorescence, a measure of advanced glycation end products, in persons receiving dialysis. Kidney Int. Rep. 2020, 5, 654–662. [Google Scholar] [CrossRef]
- Hörner, D.V.; Willingham, F.C.; Selby, N.M.; Taal, M.W. Impact of dietetic intervention on skin autofluorescence and nutritional status in persons receiving dialysis: A proof of principle study. J. Ren. Nutr. 2020, 30, 540–547. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Zhu, L.; Wu, J. RAGE signalling in obesity and diabetes: Focus on the adipose tissue macrophage. Adipocyte 2020, 9, 563–566. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Jeong, M.; Jang, S. Molecular characteristics of RAGE and advances in small-molecule inhibitors. Int. J. Mol. Sci. 2021, 22, 6904. [Google Scholar] [CrossRef] [PubMed]
- Sigrist, M.; Bungay, P.; Taal, M.; McIntyre, C.W. Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol. Dial. Transplant. 2006, 21, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Jean, G.; Bresson, E.; Terrat, J.-C.; Vanel, T.; Hurot, J.-M.; Lorriaux, C.; Mayor, B.; Chazot, C. Peripheral vascular calcification in long-haemodialysis patients: Associated factors and survival consequences. Nephrol. Dial. Transplant. 2009, 24, 948–955. [Google Scholar] [CrossRef] [Green Version]
- Galassi, A.; Spiegel, D.M.; Bellasi, A.; Block, G.A.; Raggi, P. Accelerated vascular calcification and relative hypoparathyroidism in incident haemodialysis diabetic patients receiving calcium binders. Nephrol. Dial. Transplant. 2006, 21, 3215–3222. [Google Scholar] [CrossRef] [Green Version]
- Rufino, M.; García, S.; Jiménez, A.; Alvarez, A.; Miquel, R.; Delgado, P.; Marrero, D.; Torres, A.; Hernández, D.; Lorenzo, V. Heart valve calcification and calcium x phosphorus product in Hemodialysis patients: Analysis of optimum values for its prevention. Kidney Int. Suppl. 2003, 63, S115–S118. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, N.D.; Kerr, P.G. Vascular calcification and arterial stiffness in chronic kidney disease: Implications and management. Nephrology 2007, 12, 500–509. [Google Scholar] [CrossRef]
- Ogata, H.; Fukagawa, M.; Hirakata, H.; Kagimura, T.; Fukushima, M.; Akizawa, T.; Suzuki, M.; Nishizawa, Y.; Yamazaki, C.; Tanaka, S.; et al. Effect of treating hyperphosphatemia with lanthanum carbonate vs calcium carbonate on cardiovascular events in patients with chronic kidney disease undergoing Hemodialysis: The LANDMARK randomized clinical trial. JAMA 2021, 325, 1946–1954. [Google Scholar] [CrossRef]
- Cozzolino, M.; Fusaro, M.; Ciceri, P.; Gasperoni, L.; Cianciolo, G. The role of vitamin k in vascular calcification. Adv. Chronic Kidney Dis. 2019, 26, 437–444. [Google Scholar] [CrossRef]
- Collins, A.J.; Hao, W.; Xia, H.; Ebben, J.P.; Everson, S.E.; Constantini, E.G.; Ma, J.Z. Mortality risks of peritoneal dialysis and Hemodialysis. Am. J. Kidney Dis. 1999, 34, 1065–1074. [Google Scholar] [CrossRef]
- Heaf, J.G.; Løkkegaard, H.; Madsen, M. Initial survival advantage of peritoneal dialysis relative to haemodialysis. Nephrol. Dial. Transplant. 2002, 17, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, N.M.; Kazmi, I. Peritoneal dialysis has optimal intradialytic hemodynamics and preserves residual renal function: Why isn’t it better than Hemodialysis ? Semin. Dial. 2018, 32, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vonesh, E.F.; Snyder, J.J.; Foley, R.N.; Collins, A.J. Mortality studies comparing peritoneal dialysis and Hemodialysis: What do they tell us? Kidney Int. Suppl. 2006, 70, S3–S11. [Google Scholar] [CrossRef] [Green Version]
- Couchoud, C.; Bolignano, D.; Nistor, I.; Jager, K.J.; Heaf, J.; Heimburger, O.; Van Biesen, W.; Bilo, H.; Coentrao, L.; Covic, A.; et al. Dialysis modality choice in diabetic patients with end-stage kidney disease: A systematic review of the available evidence. Nephrol. Dial. Transplant. 2014, 30, 310–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, D.C.; Kasiske, B.L. Statins for Hemodialysis patients with diabetes? Long-term follow-up endorses the original conclusions of the 4D Study. Kidney Int. 2016, 89, 1189–1191. [Google Scholar] [CrossRef] [PubMed]
- Georgianos, P.I.; Agarwal, R. Blood pressure and mortality in long-term Hemodialysis —Time to move forward. Am. J. Hypertens. 2017, 30, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, S.P.B.; McCullough, K.P.; Thumma, J.R.; Nelson, R.G.; Morgenstern, H.; Gillespie, B.W.; Inaba, M.; Jacobson, S.H.; Vanholder, R.; Pisoni, R.L.; et al. Hemoglobin A1c levels and mortality in the diabetic Hemodialysis population: Findings from the dialysis outcomes and practice patterns study (DOPPS). Diabetes Care 2012, 35, 2527–2532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricks, J.; Molnar, M.Z.; Kovesdy, C.P.; Shah, A.; Nissenson, A.R.; Williams, M.; Kalantar-Zadeh, K. Glycemic control and cardiovascular mortality in Hemodialysis patients with diabetes: A 6-year cohort study. Diabetes 2012, 61, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.E.; Lacson, E., Jr.; Wang, W.; Lazarus, J.M.; Hakim, R. Glycemic control and extended Hemodialysis survival in patients with diabetes mellitus: Comparative results of traditional and time-dependent cox model analyses. Clin. J. Am. Soc. Nephrol. 2010, 5, 1595–1601. [Google Scholar] [CrossRef]
- Duong, U.; Mehrotra, R.; Molnar, M.Z.; Noori, N.; Kovesdy, C.P.; Nissenson, A.R.; Kalantar-Zadeh, K. Glycemic control and survival in peritoneal dialysis patients with diabetes mellitus. Clin. J. Am. Soc. Nephrol. 2011, 6, 1041–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, F.; Carfagna, F.; Del Vecchio, L.; La Milia, V. Haemodialysis or haemodiafiltration: That is the question. Nephrol. Dial. Transplant. 2018, 33, 1896–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leapman, S.B.; Boyle, M.; Pescovitz, M.D.; Milgrom, M.L.; Jindal, R.M.; Filo, R.S. The arteriovenous fistula for Hemodialysis access: Gold standard or archaic relic? Am. Surg. 1996, 62, 652–656. [Google Scholar] [PubMed]
- Konner, K.; Hulbert-Shearon, T.E.; Roys, E.C.; Port, F.K. Tailoring the initial vascular access for dialysis patients. Kidney Int. 2002, 62, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Hakaim, A.G.; Nalbandian, M.; Scott, T. Superior maturation and patency of primary brachiocephalic and transposed basilic vein arteriovenous fistulae in patients with diabetes. J. Vasc. Surg. 1998, 27, 154–157. [Google Scholar] [CrossRef] [Green Version]
- Schinstock, C.A.; Albright, R.C.; Williams, A.W.; Dillon, J.J.; Bergstralh, E.J.; Jenson, B.M.; McCarthy, J.T.; Nath, K.A. Outcomes of arteriovenous fistula creation after the fistula first initiative. Clin. J. Am. Soc. Nephrol. 2011, 6, 1996–2002. [Google Scholar] [CrossRef] [Green Version]
- De Pinho, N.A.; Coscas, R.; Metzger, M.; Labeeuw, M.; Ayav, C.; Jacquelinet, C.; Massy, Z.A.; Stengel, B. Predictors of nonfunctional arteriovenous access at Hemodialysis initiation and timing of access creation: A registry-based study. PLoS ONE 2017, 12, e0181254. [Google Scholar] [CrossRef] [Green Version]
- Miller, P.E.; Tolwani, A.; Luscy, C.P.; Deierhoi, M.H.; Bailey, R.; Redden, D.T.; Allon, M. Predictors of adequacy of arteriovenous fistulas in Hemodialysis patients. Kidney Int. 1999, 56, 275–280. [Google Scholar] [CrossRef] [Green Version]
- Ernandez, T.; Saudan, P.; Berney, T.; Merminod, T.; Bednarkiewicz, M.; Martin, P.-Y. Risk Factors for early failure of native arteriovenous fistulas. Nephron Clin. Pract. 2005, 101, c39–c44. [Google Scholar] [CrossRef]
- Lok, C.E.; Allon, M.; Moist, L.; Oliver, M.J.; Shah, H.; Zimmerman, D. Risk equation determining unsuccessful cannulation events and failure to maturation in arteriovenous fistulas (REDUCE FTM I). J. Am. Soc. Nephrol. 2006, 17, 3204–3212. [Google Scholar] [CrossRef]
- Patel, S.T.; Hughes, J.; Mills, J.L., Sr. Failure of arteriovenous fistula maturation: An unintended consequence of exceeding Dialysis outcome quality initiative guidelines for Hemodialysis access. J. Vasc. Surg. 2003, 38, 439–445. [Google Scholar] [CrossRef] [Green Version]
- Feldman, H.I.; Joffe, M.; Rosas, S.E.; Burns, J.; Knauss, J.; Brayman, K. Predictors of successful arteriovenous fistula maturation. Am. J. Kidney Dis. 2003, 42, 1000–1012. [Google Scholar] [CrossRef] [PubMed]
- Wolford, H.Y.; Hsu, J.; Rhodes, J.M.; Shortell, C.K.; Davies, M.G.; Bakhru, A.; Illig, K.A. Outcome after autogenous brachial-basilic upper arm transpositions in the post-national kidney foundation dialysis outcomes quality initiative era. J. Vasc. Surg. 2005, 42, 951–956. [Google Scholar] [CrossRef] [Green Version]
- Okamuro, L.; Gray, K.; Korn, A.; Parrish, A.; Kaji, A.; Howell, E.C.; Bowens, N.; de Virgilio, C. Careful patient selection achieves high Radiocephalic arteriovenous fistula patency in diabetic and female patients. Ann. Vasc. Surg. 2019, 57, 16–21. [Google Scholar] [CrossRef]
- Farrington, C.A.; Robbin, M.L.; Lee, T.; Barker-Finkel, J.; Allon, M. Early predictors of arteriovenous fistula maturation: A novel perspective on an enduring problem. J. Am. Soc. Nephrol. 2020, 31, 1617–1627. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-H.; Yin, Y.-M.; Chen, H.; Rui, Z.-R.; Yuan, Y.; Yun, H.; Wang, J.-W. Clinical research on individualized Haemodialysis preventing unconventional hypotension in diabetic nephropathy patient. Int. J. Artif. Organs 2020, 43, 229–233. [Google Scholar] [CrossRef]
- Takahara, M.; Soga, Y.; Fujihara, M.; Kawasaki, D.; Kozuki, A.; Iida, O. Inverse association of diabetes and dialysis with the severity of femoropopliteal lesions and chronic total occlusion: A cross-sectional study of 2056 cases. BMC Cardiovasc. Disord. 2020, 20, 514. [Google Scholar] [CrossRef]
- Chesterton, L.J.; Selby, N.M.; Burton, J.O.; Fialova, J.; Chan, C.; Mcintyre, C.W. Categorization of the hemodynamic response to Hemodialysis: The importance of baroreflex sensitivity. Hemodial. Int. 2010, 14, 18–28. [Google Scholar] [CrossRef]
- McIntyre, C.W.; Burton, J.; Selby, N.; Leccisotti, L.; Korsheed, S.; Baker, C.S.; Camici, P.G. Hemodialysis -induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin. J. Am. Soc. Nephrol. 2008, 3, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Burton, J.; Jefferies, H.J.; Selby, N.; McIntyre, C.W. Hemodialysis -induced cardiac injury: Determinants and associated outcomes. Clin. J. Am. Soc. Nephrol. 2009, 4, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Eldehni, M.T.; Odudu, A.; McIntyre, C.W. Randomized clinical trial of dialysate cooling and effects on brain white matter. J. Am. Soc. Nephrol. 2015, 26, 957–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, N.; McIntyre, C.W. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol. Dial. Transplant. 2006, 21, 1883–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chesterton, L.J.; Selby, N.M.; Burton, J.O.; Mcintyre, C.W. Cool dialysate reduces asymptomatic intradialytic hypotension and increases baroreflex variability. Hemodial. Int. 2009, 13, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Odudu, A.; Eldehni, M.T.; McCann, G.P.; McIntyre, C.W. Randomized controlled trial of individualized dialysate cooling for cardiac protection in Hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2015, 10, 1408–1417. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, A.; Shafiee, M.; Rowghani, K. Stabilizing effects of cool dialysate temperature on hemodynamic parameters in diabetic patients undergoing Hemodialysis. Saudi J. Kidney Dis. Transplant. 2008, 19, 378–383. [Google Scholar]
- Eldehni, M.; Odudu, A.; McIntyre, C. Exploring haemodynamics of haemodialysis using extrema points analysis model. Theor. Biol. Med. Model. 2013, 10, 33. [Google Scholar] [CrossRef] [Green Version]
- Eldehni, M.T.; Odudu, A.; McIntyre, C.W. Characterising haemodynamic stress during haemodialysis using the extrema points analysis model. Nephron Clin. Pract. 2014, 128, 39–44. [Google Scholar] [CrossRef]
- Gullapudi, V.R.L.; White, K.; Stewart, J.; Stewart, P.; Eldehni, M.T.; Taal, M.W.; Selby, N.M. An analysis of frequency of continuous blood pressure variation and haemodynamic responses during haemodialysis. Blood Purif. 2022, 51, 435–449. [Google Scholar] [CrossRef]
- Stewart, J.; Stewart, P.; Walker, T.; Horner, D.V.; Lucas, B.; White, K.; Muggleton, A.; Morris, M.; Selby, N.M.; Taal, M.W. A Feasibility study of non-invasive continuous estimation of brachial pressure derived from arterial and venous lines during dialysis. IEEE J. Transl. Eng. Health Med. 2021, 9, 2700209. [Google Scholar] [CrossRef]
- Katla, V.; Khyalappa, R. Hemodialysis and effect of corrective measures to prevent hypoglycemia. J. Assoc. Physicians India 2022, 70, 11–12. [Google Scholar]
- Gai, M.; Merlo, I.; Dellepiane, S.; Cantaluppi, V.; Leonardi, G.; Fop, F.; Guarena, C.; Grassi, G.; Biancone, L. Glycemic pattern in diabetic patients on Hemodialysis: Continuous glucose monitoring (CGM) analysis. Blood Purif. 2014, 38, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Okada, K.; Ikeda, K.; Matsumoto, S.; Soma, M.; Matsumoto, K. Characterization of insulin adsorption behavior of dialyzer membranes used in Hemodialysis. Artif. Organs 2011, 35, 398–403. [Google Scholar] [CrossRef]
- Blaine, E.; Tumlinson, R.; Colvin, M.; Haynes, T.; Whitley, H.P. Systematic literature review of insulin dose adjustments when initiating Hemodialysis or peritoneal dialysis. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2022, 42, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Htay, H.; Johnson, D.W.; Wiggins, K.J.; Badve, S.V.; Craig, J.C.; Strippoli, G.F.; Cho, Y. Biocompatible dialysis fluids for peritoneal dialysis. Cochrane Database Syst. Rev. 2018, 2018, CD007554. [Google Scholar] [CrossRef] [PubMed]
- Guedes, A.M.; Marques, R.; Domingos, A.T.; Silva, A.P.; Bernardo, I.; Neves, P.L.; Rodrigues, A.; Krediet, R.T. Overhydration may be the missing link between peritoneal protein clearance and mortality. Nephron Clin. Pract. 2021, 145, 474–480. [Google Scholar] [CrossRef]
- Hecking, M.; Moissl, U.; Genser, B.; Rayner, H.; Dasgupta, I.; Stuard, S.; Stopper, A.; Chazot, C.; Maddux, F.W.; Canaud, B.; et al. Greater fluid overload and lower interdialytic weight gain are independently associated with mortality in a large international Hemodialysis population. Nephrol. Dial. Transplant. 2018, 33, 1832–1842. [Google Scholar] [CrossRef] [Green Version]
- Fouque, D.; Vennegoor, M.; Ter Wee, P.; Wanner, C.; Basci, A.; Canaud, B.; Haage, P.; Konner, K.; Kooman, J.; Martin-Malo, A.; et al. EBPG guideline on nutrition. Nephrol. Dial. Transplant. 2007, 22 (Suppl. 2), ii45–ii87. [Google Scholar] [CrossRef] [Green Version]
- Dantas, L.G.G.; Rocha, M.D.S.; Junior, J.A.M.; Paschoalin, E.L.; Paschoalin, S.R.K.P.; Cruz, C.M.S. Non-adherence to Haemodialysis, interdialytic weight gain and cardiovascular mortality: A cohort study. BMC Nephrol. 2019, 20, 402–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossola, M.; Pepe, G.; Vulpio, C. The frustrating attempt to limit the interdialytic weight gain in patients on chronic Hemodialysis: New insights into an old problem. J. Ren. Nutr. 2018, 28, 293–301. [Google Scholar] [CrossRef] [Green Version]
- Bossola, M.; Tazza, L. Xerostomia in patients on chronic Hemodialysis. Nat. Rev. Nephrol. 2012, 8, 176–182. [Google Scholar] [CrossRef]
- Bots, C.P.; Brand, H.S.; Veerman, E.C.; Valentijn-Benz, M.; Van Amerongen, B.M.; Valentijn, R.M.; Vos, P.F.; Bijlsma, J.A.; Bezemer, P.D.; ter Wee, P.M.; et al. Interdialytic weight gain in patients on Hemodialysis is associated with dry mouth and thirst. Kidney Int. 2004, 66, 1662–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruzda-Zwiech, A.; Szczepańska, J.; Zwiech, R. Xerostomia, thirst, sodium gradient and inter-dialytic weight gain in Hemodialysis diabetic vs. non-diabetic patients. Med. Oral. Patol. Oral. Cir. Bucal. 2018, 23, e406–e412. [Google Scholar] [CrossRef] [PubMed]
- Duruk, N.; Eşer, I. The null effect of chewing gum during Hemodialysis on dry mouth. Clin. Nurse Spéc. 2016, 30, E12–E23. [Google Scholar] [CrossRef]
- Yang, L.-Y.; Lee, B.-O.; Lee, K.-N.; Chen, C.-A. Effects of electrical stimulation of acupoints on xerostomia for patients who undergo Hemodialysis. Healthcare 2022, 10, 498. [Google Scholar] [CrossRef]
- Chang, A.; Chung, Y.; Kang, M. Effects of the combination of auricular acupressure and a fluid-restriction adherence program on salivary flow rate, xerostomia, fluid control, interdialytic weight gain, and diet-related quality of life in patients undergoing Hemodialysis. Int. J. Environ. Res. Public Health 2021, 18, 10520. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A. Interdialytic weight gain in diabetic haemodialysis patients and diabetic control as assessed by glycated haemoglobin. Nephron Clin. Pract. 2009, 113, c33–c37. [Google Scholar] [CrossRef]
- Van Biesen, W.; Williams, J.D.; Covic, A.C.; Fan, S.; Claes, K.; Lichodziejewska-Niemierko, M.; Verger, C.; Steiger, J.; Schoder, V.; Wabel, P.; et al. Fluid status in peritoneal dialysis patients: The European body composition monitoring (EuroBCM) study cohort. PLoS ONE 2011, 6, e17148. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, Z.; Yıldırım, Y.; Aydın, F.Y.; Aydın, E.; Kadiroğlu, A.K.; Yılmaz, M.E.; Acet, H. Evaluation of fluid status related parameters in Hemodialysis and peritoneal dialysis patients: Clinical usefulness of bioimpedance analysis. Medicina 2014, 50, 269–274. [Google Scholar] [CrossRef]
- Jaques, D.A.; Davenport, A. Determinants of volume status in peritoneal dialysis: A longitudinal study. Nephrology 2020, 25, 785–791. [Google Scholar] [CrossRef]
- van der Sande, F.M.; van de Wal-Visscher, E.R.; Stuard, S.; Moissl, U.; Kooman, J.P. Using bioimpedance spectroscopy to assess volume status in dialysis patients. Blood Purif. 2020, 49, 178–184. [Google Scholar] [CrossRef]
- Slabbert, A.; Chothia, M.-Y. The association between office blood pressure and fluid status using bioimpedance spectroscopy in stable continuous ambulatory peritoneal dialysis patients. Clin. Hypertens. 2022, 28, 8. [Google Scholar] [CrossRef] [PubMed]
- Tian, N.; Yang, X.; Guo, Q.; Zhou, Q.; Yi, C.; Lin, J.; Cao, P.; Ye, H.; Chen, M.; Yu, X. Bioimpedance guided fluid management in peritoneal dialysis: A randomized controlled trial. Clin. J. Am. Soc. Nephrol. 2020, 15, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, T.; Hobo, A.; Hayasaki, T.; Kabu, K.; Furuta, S. A pilot study examining the effects of tolvaptan on residual renal function in peritoneal dialysis for diabetics. Perit. Dial. Int. 2015, 35, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahathevan, S.; Khor, B.-H.; Ng, H.-M.; Gafor, A.H.A.; Daud, Z.A.M.; Mafra, D.; Karupaiah, T. Understanding development of malnutrition in Hemodialysis patients: A narrative review. Nutrients 2020, 12, 3147. [Google Scholar] [CrossRef]
- Bergström, J. Nutrition and mortality in Hemodialysis. J. Am. Soc. Nephrol. 1995, 6, 1329–1341. [Google Scholar] [CrossRef]
- Chan, M.; Kelly, J.; Batterham, M.; Tapsell, L. Malnutrition (subjective global assessment) scores and serum albumin levels, but not body mass index values, at initiation of dialysis are independent predictors of mortality: A 10-year clinical cohort study. J. Ren. Nutr. 2012, 22, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Hafi, E.; Soradi, R.; Diab, S.; Samara, A.M.; Shakhshir, M.; Alqub, M.; Zyoud, S.H. Nutritional status and quality of life in diabetic patients on Hemodialysis: A cross-sectional study from Palestine. J. Health Popul. Nutr. 2021, 40, 30. [Google Scholar] [CrossRef] [PubMed]
- Cano, N.J.; Roth, H.; Aparicio, M.; Azar, R.; Canaud, B.; Chauveau, P.; Combe, C.; Fouque, D.; Laville, M.; Leverve, X.M. Malnutrition in Hemodialysis diabetic patients: Evaluation and prognostic influence. Kidney Int. 2002, 62, 593–601. [Google Scholar] [CrossRef]
- Boaz, M.; Azoulay, O.; Kaufman-Shriqui, V.; Weinstein, T. Status of nutrition In Hemodialysis patients survey (SNIPS): Malnutrition risk by diabetes status. Diabet. Med. 2021, 38, e14543. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D. Obesity paradox in patients on maintenance dialysis. Contrib. Nephrol. 2006, 151, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Kittiskulnam, P.; Johansen, K.L. The obesity paradox: A further consideration in dialysis patients. Semin. Dial. 2019, 32, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Pei, M.; Aguiar, R.; Pagels, A.A.; Heimbürger, O.; Stenvinkel, P.; Bárány, P.; Medin, C.; Jacobson, S.H.; Hylander, B.; Lindholm, B.; et al. Health-related quality of life as predictor of mortality in end-stage renal disease patients: An observational study. BMC Nephrol. 2019, 20, 144. [Google Scholar] [CrossRef] [PubMed]
- Hayashino, Y.; Fukuhara, S.; Akiba, T.; Akizawa, T.; Asano, Y.; Saito, S.; Kurokawa, K. Low health-related quality of life is associated with all-cause mortality in patients with diabetes on haemodialysis: The Japan dialysis outcomes and practice pattern study. Diabet. Med. 2009, 26, 921–927. [Google Scholar] [CrossRef]
- Revuelta, K.L.; López, F.J.G.; Moreno, F.D.; Alonso, J. Perceived mental health at the start of dialysis as a predictor of morbidity and mortality in patients with end-stage renal disease (CALVIDIA study). Nephrol. Dial. Transplant. 2004, 19, 2347–2353. [Google Scholar] [CrossRef] [Green Version]
- Østhus, T.B.H.; von der Lippe, N.; Ribu, L.; Rustøen, T.; Leivestad, T.; Dammen, T.; Os, I. Health-related quality of life and all-cause mortality in patients with diabetes on dialysis. BMC Nephrol. 2012, 13, 78. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, V.R.; Mathiesen, E.R.; Watt, T.; Bjorner, J.B.; Andersen, M.V.N.; Feldt-Rasmussen, B. Diabetic patients treated with dialysis: Complications and quality of life. Diabetologia 2007, 50, 2254–2262. [Google Scholar] [CrossRef] [PubMed]
Haemodialysis | Peritoneal Dialysis | |
---|---|---|
Insulin | Reduce by up to 25% | Increase by up to 30% |
Metformin | Not recommended | Not recommended |
Sulfonylurea | ||
Linagliptin | 5 mg/od | 5 mg/od |
Sitagliptin | 25 mg/od | 25 mg/od |
Vildagliptin | 50 mg/od | 50 mg/od |
Alogliptin | 6.25 mg/od | 6.25 mg/od |
SGLT2 Inhibitors | Not recommended | Not recommended |
GLP1 Receptor Agonists | Not recommended | Not recommended |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eldehni, M.T.; Crowley, L.E.; Selby, N.M. Challenges in Management of Diabetic Patient on Dialysis. Kidney Dial. 2022, 2, 553-564. https://doi.org/10.3390/kidneydial2040050
Eldehni MT, Crowley LE, Selby NM. Challenges in Management of Diabetic Patient on Dialysis. Kidney and Dialysis. 2022; 2(4):553-564. https://doi.org/10.3390/kidneydial2040050
Chicago/Turabian StyleEldehni, Mohamed T., Lisa E. Crowley, and Nicholas M. Selby. 2022. "Challenges in Management of Diabetic Patient on Dialysis" Kidney and Dialysis 2, no. 4: 553-564. https://doi.org/10.3390/kidneydial2040050