In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Scaffold Construction
Flye Contig Assembly
3.2. Genomic Investigations of H. salinarum ATCC 33170 Contigs for Prophage-like Elements
3.2.1. PHASTER
3.2.2. BLAST
3.2.3. PHYRE2
3.2.4. InterProScan
3.2.5. PADLOC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichler, J. Halobacterium salinarum: Life with More than a Grain of Salt: This Article Is Part of the Microbe Profiles Collection. Microbiology 2023, 169, 001327. [Google Scholar] [CrossRef]
- McCready, S.; Marcello, L. Repair of UV Damage in Halobacterium salinarum. Biochem. Soc. Trans. 2003, 31, 694–698. [Google Scholar] [CrossRef]
- McCluskie, M.J.; Deschatelets, L.; Krishnan, L. Sulfated Archaeal Glycolipid Archaeosomes as a Safe and Effective Vaccine Adjuvant for Induction of Cell-Mediated Immunity. Hum. Vaccines Immunother. 2017, 13, 2772–2779. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; Deschatelets, L.; Harrison, B.A.; Dudani, R.; Stark, F.C.; Jia, Y.; Landi, A.; Law, J.L.M.; Logan, M.; Hockman, D.; et al. Effect of Different Adjuvants on the Longevity and Strength of Humoral and Cellular Immune Responses to the HCV Envelope Glycoproteins. Vaccines 2019, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; Renner, T.M.; Tran, A.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Duque, D.; Haukenfrers, J.; Rossotti, M.A.; Gaudreault, F.; et al. Immunogenic and Efficacious SARS-CoV-2 Vaccine Based on Resistin-Trimerized Spike Antigen SmT1 and SLA Archaeosome Adjuvant. Sci. Rep. 2021, 11, 21849. [Google Scholar] [CrossRef] [PubMed]
- Renner, T.M.; Akache, B.; Stuible, M.; Rohani, N.; Cepero-Donates, Y.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Baardsnes, J.; Koyuturk, I.; et al. Tuning the Immune Response: Sulfated Archaeal Glycolipid Archaeosomes as an Effective Vaccine Adjuvant for Induction of Humoral and Cell-Mediated Immunity towards the SARS-CoV-2 Omicron Variant of Concern. Front. Immunol. 2023, 14, 1182556. [Google Scholar] [CrossRef]
- Luk, A.W.S.; Williams, T.J.; Erdmann, S.; Papke, R.T.; Cavicchioli, R. Viruses of Haloarchaea. Life 2014, 4, 681–715. [Google Scholar] [CrossRef]
- Atanasova, N.S.; Roine, E.; Oren, A.; Bamford, D.H.; Oksanen, H.M. Global Network of Specific Virus-Host Interactions in Hypersaline Environments: Haloviruses Are Promiscuous. Environ. Microbiol. 2012, 14, 426–440. [Google Scholar] [CrossRef]
- Alarcón-Schumacher, T.; Naor, A.; Gophna, U.; Erdmann, S. Isolation of a Virus Causing a Chronic Infection in the Archaeal Model Organism Haloferax volcanii Reveals Antiviral Activities of a Provirus. Proc. Natl. Acad. Sci. USA 2022, 119, e2205037119. [Google Scholar] [CrossRef]
- Dyall-Smith, M.L.; Pfeiffer, F.; Klee, K.; Palm, P.; Gross, K.; Schuster, S.C.; Rampp, M.; Oesterhelt, D. Haloquadratum Walsbyi: Limited Diversity in a Global Pond. PLoS ONE 2011, 6, e20968. [Google Scholar] [CrossRef]
- Ken, R.; Hackett, N.R. Halobacterium Halobium Strains Lysogenic for Phage Phi H Contain a Protein Resembling Coliphage Repressors. J. Bacteriol. 1991, 173, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.; Yeats, C.; Perkins, J.; Sillitoe, I.; Rentzsch, R.; Dessailly, B.H.; Orengo, C. Gene3D: A Domain-Based Resource for Comparative Genomics, Functional Annotation and Protein Network Analysis. Nucleic Acids Res. 2012, 40, D465–D471. [Google Scholar] [CrossRef] [PubMed]
- Pedruzzi, I.; Rivoire, C.; Auchincloss, A.H.; Coudert, E.; Keller, G.; de Castro, E.; Baratin, D.; Cuche, B.A.; Bougueleret, L.; Poux, S.; et al. HAMAP in 2015: Updates to the Protein Family Classification and Annotation System. Nucleic Acids Res. 2015, 43, D1064–D1070. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.-P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H. PIRSF: Family Classification System at the Protein Information Resource. Nucleic Acids Res. 2004, 32, D112–D114. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Gough, J.; Karplus, K.; Hughey, R.; Chothia, C. Assignment of Homology to Genome Sequences Using a Library of Hidden Markov Models That Represent All Proteins of Known Structure. J. Mol. Biol. 2001, 313, 903–919. [Google Scholar] [CrossRef]
- Haft, D.H.; Loftus, B.J.; Richardson, D.L.; Yang, F.; Eisen, J.A.; Paulsen, I.T.; White, O. TIGRFAMs: A Protein Family Resource for the Functional Identification of Proteins. Nucleic Acids Res. 2001, 29, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.J.; Meaden, S.; Mestre, M.R.; Palmer, C.; Toro, N.; Fineran, P.C.; Jackson, S.A. PADLOC: A Web Server for the Identification of Antiviral Defence Systems in Microbial Genomes. Nucleic Acids Res. 2022, 50, W541–W550. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Stanger, F.V.; Dehio, C. Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Annu. Rev. Microbiol. 2016, 70, 341–360. [Google Scholar] [CrossRef]
- Engel, P.; Goepfert, A.; Stanger, F.V.; Harms, A.; Schmidt, A.; Schirmer, T.; Dehio, C. Adenylylation Control by Intra- or Intermolecular Active-Site Obstruction in Fic Proteins. Nature 2012, 482, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, T.; Sberro, H.; Weinstock, E.; Cohen, O.; Doron, S.; Charpak-Amikam, Y.; Afik, S.; Ofir, G.; Sorek, R. BREX Is a Novel Phage Resistance System Widespread in Microbial Genomes. EMBO J. 2015, 34, 169–183. [Google Scholar] [CrossRef]
- Bravo, J.P.K.; Aparicio-Maldonado, C.; Nobrega, F.L.; Brouns, S.J.J.; Taylor, D.W. Structural Basis for Broad Anti-Phage Immunity by DISARM. Nat. Commun. 2022, 13, 2987. [Google Scholar] [CrossRef]
- Millman, A.; Melamed, S.; Leavitt, A.; Doron, S.; Bernheim, A.; Hör, J.; Garb, J.; Bechon, N.; Brandis, A.; Lopatina, A.; et al. An Expanded Arsenal of Immune Systems That Protect Bacteria from Phages. Cell Host Microbe 2022, 30, 1556–1569.e5. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, J.-S.; Taffner, J.; Berg, G.; Ryu, C.-M. Archaea, Tiny Helpers of Land Plants. Comput. Struct. Biotechnol. J. 2020, 18, 2494–2500. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-Crespo, J.; Martínez-Espinosa, R.M.; Esclapez, J.; Bautista, V.; Pire, C.; Camacho, M.; Richardson, D.J.; Bonete, M.J. Anaerobic Metabolism in Haloferax Genus. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 68, pp. 41–85. ISBN 978-0-12-804823-8. [Google Scholar]
- Hochstein, L.I.; Lang, F. Purification and Properties of a Dissimilatory Nitrate Reductase from Haloferax Denitrificans. Arch. Biochem. Biophys. 1991, 288, 380–385. [Google Scholar] [CrossRef]
- Demina, T.A.; Oksanen, H.M. Pleomorphic Archaeal Viruses: The Family Pleolipoviridae Is Expanding by Seven New Species. Arch. Virol. 2020, 165, 2723–2731. [Google Scholar] [CrossRef]
- Pietilä, M.K.; Roine, E.; Paulin, L.; Kalkkinen, N.; Bamford, D.H. An ssDNA Virus Infecting Archaea: A New Lineage of Viruses with a Membrane Envelope. Mol. Microbiol. 2009, 72, 307–319. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, S.; Yang, D.; Cheng, Y.; Hu, J.; Chen, J.; Mei, Y.; Shen, P.; Bamford, D.H.; et al. Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to That of Plasmid pHH205. Virology 2012, 434, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, Z.; Wang, Y.; Gong, H.; Sima, L.; Wang, J.; Ouyang, S.; Gan, W.; Krupovic, M.; Chen, X.; et al. ORF4 of the Temperate Archaeal Virus SNJ1 Governs the Lysis-Lysogeny Switch and Superinfection Immunity. J. Virol. 2020, 94, e00841-20. [Google Scholar] [CrossRef]
- Witte, A.; Baranyi, U.; Klein, R.; Sulzner, M.; Luo, C.; Wanner, G.; Krüger, D.H.; Lubitz, W. Characterization of Natronobacterium magadii Phage ΦCh1, a Unique Archaeal Phage Containing DNA and RNA. Mol. Microbiol. 1997, 23, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.A.; Atanasova, N.S.; Pietilä, M.K.; Oksanen, H.M.; Bamford, D.H. Vesicle-like Virion of Haloarcula hispanica Pleomorphic Virus 3 Preserves High Infectivity in Saturated Salt. Virology 2016, 499, 40–51. [Google Scholar] [CrossRef]
- Lee, S.T.M.; Ding, J.; Chiang, P.; Dyall-Smith, M.; Tang, S. Insights into Gene Regulation of the Halovirus His2 Infecting Haloarcula hispanica. MicrobiologyOpen 2020, 9, e1016. [Google Scholar] [CrossRef]
- Bath, C.; Cukalac, T.; Porter, K.; Dyall-Smith, M.L. His1 and His2 Are Distantly Related, Spindle-Shaped Haloviruses Belonging to the Novel Virus Group, Salterprovirus. Virology 2006, 350, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Pietilä, M.K.; Laurinavičius, S.; Sund, J.; Roine, E.; Bamford, D.H. The Single-Stranded DNA Genome of Novel Archaeal Virus Halorubrum Pleomorphic Virus 1 Is Enclosed in the Envelope Decorated with Glycoprotein Spikes. J. Virol. 2010, 84, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.L.; Pfeifer, F.; Dyall-Smith, M.L. Analysis of the Halobacterial Plasmid pHK2 Minimal Replicon. Gene 1995, 153, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Thoden, J.B.; Holden, H.M. Active Site Geometry of Glucose-1-Phosphate Uridylyltransferase. Protein Sci. 2007, 16, 1379–1388. [Google Scholar] [CrossRef]
- Alonso, M.D.; Lomako, J.; Lomako, W.M.; Whelan, W.J. A New Look at the Biogenesis of Glycogen. FASEB J. 1995, 9, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Holden, H.M.; Rayment, I.; Thoden, J.B. Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. J. Biol. Chem. 2003, 278, 43885–43888. [Google Scholar] [CrossRef] [PubMed]
- Jaroentomeechai, T.; Stark, J.C.; Natarajan, A.; Glasscock, C.J.; Yates, L.E.; Hsu, K.J.; Mrksich, M.; Jewett, M.C.; DeLisa, M.P. Single-Pot Glycoprotein Biosynthesis Using a Cell-Free Transcription-Translation System Enriched with Glycosylation Machinery. Nat. Commun. 2018, 9, 2686. [Google Scholar] [CrossRef] [PubMed]
- Egger, S.; Chaikuad, A.; Kavanagh, K.L.; Oppermann, U.; Nidetzky, B. UDP-Glucose Dehydrogenase: Structure and Function of a Potential Drug Target. Biochem. Soc. Trans. 2010, 38, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Dueber, E.L.C.; Corn, J.E.; Bell, S.D.; Berger, J.M. Replication Origin Recognition and Deformation by a Heterodimeric Archaeal Orc1 Complex. Science 2007, 317, 1210–1213. [Google Scholar] [CrossRef]
- Duderstadt, K.E.; Chuang, K.; Berger, J.M. DNA Stretching by Bacterial Initiators Promotes Replication Origin Opening. Nature 2011, 478, 209–213. [Google Scholar] [CrossRef]
- Takeda, S.N.; Nakagawa, R.; Okazaki, S.; Hirano, H.; Kobayashi, K.; Kusakizako, T.; Nishizawa, T.; Yamashita, K.; Nishimasu, H.; Nureki, O. Structure of the Miniature Type V-F CRISPR-Cas Effector Enzyme. Mol. Cell 2021, 81, 558–570.e3. [Google Scholar] [CrossRef]
- Xiao, R.; Li, Z.; Wang, S.; Han, R.; Chang, L. Structural Basis for Substrate Recognition and Cleavage by the Dimerization-Dependent CRISPR–Cas12f Nuclease. Nucleic Acids Res. 2021, 49, 4120–4128. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef]
- Karvelis, T.; Bigelyte, G.; Young, J.K.; Hou, Z.; Zedaveinyte, R.; Budre, K.; Paulraj, S.; Djukanovic, V.; Gasior, S.; Silanskas, A.; et al. PAM Recognition by Miniature CRISPR–Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020, 48, 5016–5023. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Yoon, J.Y.; Kim, H.S.; Kang, J.Y.; Kim, K.H.; Kim, D.J.; Ha, J.Y.; Mikami, B.; Yoon, H.J.; Suh, S.W. Crystal Structure of a Metal Ion-Bound IS200 Transposase. J. Biol. Chem. 2006, 281, 4261–4266. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espín, D.; Mateu, M.G.; Villar, L.; Marina, A.; Salas, M.; Meijer, W.J.J. Phage Φ29 DNA Replication Organizer Membrane Protein P16.7 Contains a Coiled Coil and a Dimeric, Homeodomain-Related, Functional Domain. J. Biol. Chem. 2004, 279, 50437–50445. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, R.; Zhao, D.; Xiang, H. Adaptation of the Haloarcula hispanica CRISPR-Cas System to a Purified Virus Strictly Requires a Priming Process. Nucleic Acids Res. 2014, 42, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.-K.; Stachler, A.-E.; Brendel, J.; Stoll, B.; Fischer, S.; Haas, K.A.; Schwarz, T.S.; Alkhnbashi, O.S.; Sharma, K.; Urlaub, H.; et al. The Nuts and Bolts of the Haloferax CRISPR-Cas System I-B. RNA Biol. 2019, 16, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Mercier, C.; Thies, D.; Zhong, L.; Raftery, M.J.; Erdmann, S. Characterization of an Archaeal Virus-Host System Reveals Massive Genomic Rearrangements in a Laboratory Strain. Front. Microbiol. 2023, 14, 1274068. [Google Scholar] [CrossRef]
- Costa, A.R.; Van Den Berg, D.F.; Esser, J.Q.; Muralidharan, A.; Van Den Bossche, H.; Bonilla, B.E.; Van Der Steen, B.A.; Haagsma, A.C.; Fluit, A.C.; Nobrega, F.L.; et al. Accumulation of Defense Systems in Phage-Resistant Strains of Pseudomonas aeruginosa. Sci. Adv. 2024, 10, eadj0341. [Google Scholar] [CrossRef] [PubMed]
- Kucukyildirim, S.; Ozdemirel, H.O.; Lynch, M. Similar Mutation Rates but Different Mutation Spectra in Moderate and Extremely Halophilic Archaea. G3 2023, 13, jkac303. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Losensky, G.; Marchfelder, A.; Habermann, B.; Dyall-Smith, M.L. Whole-Genome Comparison between the Type Strain of Halobacterium salinarum (DSM 3754 T) and the Laboratory Strains R1 and NRC-1. MicrobiologyOpen 2020, 9, e974. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Dyall-Smith, M. Genome Comparison Reveals That Halobacterium salinarum 63-R2 Is the Origin of the Twin Laboratory Strains NRC-1 and R1. MicrobiologyOpen 2023, 12, e1365. [Google Scholar] [CrossRef] [PubMed]
Statistics | All Contigs |
---|---|
Number of contigs | 21 |
Min Length (bp) | 1323 |
Median Length (bp) | 12,424 |
Mean Length (bp) | 115,285 |
Max Length (bp) | 1,030,011 |
N50 Length (bp) | 718,706 |
Gp | CDS Position | BLAST Hit | E-Value |
---|---|---|---|
1 | 3957–4709 * | PHAGE_Sphing_PAU_NC_019521: gp187; PP_02344; phage(gi435844690) | 5.71 × 10−27 |
2 | 4773–6065 | PHAGE_Vibrio_vB_VchM_Kuja_NC_048827: pore-forming tail tip protein; PP_02345; phage(gi100139) | 1.02 × 10−40 |
3 | 6244–7476 * | PHAGE_Archae_virus_NC_008695: hypothetical protein; PP_02346; phage(gi119757001) | 7.73 × 10−15 |
4 | 7705–8961 * | PHAGE_Rhodot_RM378_NC_004735: putative transposase; PP_02347; phage(gi30044048) | 3.25 × 10−16 |
5 | 8963–9355 * | PHAGE_Sulfol_SMV3_NC_029103: putative transposase IS200-family protein; PP_02348; phage(gi985760792) | 1.14 × 10−32 |
6 | 9745–11025 * | PHAGE_Hypert_2_NC_014321: IS element Dka2 orfB; PP_02349; phage(gi300116745) | 2.06 × 10−17 |
Gp | Phage | Accession | Taxonomy | Genome Length (bp) |
---|---|---|---|---|
1 | Sphingomonas phage PAU | NC_019521 | Myoviridae | 219,372 |
2 | Vibrio phage vB_VchM_Kuja | NC_048827.1 | Ackermannviridae | 148,180 |
3 | Archaeal BJ1 virus | NC_008695.1 | Siphoviridae | 42,271 |
4 | Rhodothermus phage RM378 | NC_004735.1 | Myoviridae | 129,908 |
5 | Sulfolobus monocaudavirus SMV3 | NC_029103 | Bicaudaviridae | 64,323 |
6 | Hyperthermophilic Archaeal Virus 2 | NC_014321 | Unclassified archaeal virus | 17,666 |
Gp | Description | Scientific Name | Morphology | Coverage (%) | E-Value | ID (%) | Accession Number |
---|---|---|---|---|---|---|---|
1 | gp187 | Sphingomonas phage PAU | Myovirus | 79 | 2.00 × 10−25 | 32.67 | YP_007006794.1 |
2 | TPA: MAG TPA: putative UDP-glucose 6-dehydrogenase | Siphoviridae sp. ctCCX1 | Siphovirus | 98 | 1.00 × 10−91 | 38.27 | DAD67937.1 |
3 | Orc1-type DNA replication protein | Halobacterium virus ChaoS9 | Myovirus | 89 | 5.00 × 10−11 | 25.13 | YP_010078015.1 |
4 | Transposase | Halobacterium phage phiH | Myovirus | 100 | 0 | 100.00 | YP_009981874.1 |
5 | IS200/IS605-like element ISH1-8 family transposase | Halobacterium phage phiH | Myovirus | 100 | 2.00 × 10−91 | 100.00 | YP_009981873.1 |
6 | TPA: MAG TPA: putative transposase | Siphoviridae sp. | Siphovirus | 84 | 8.00 × 10−26 | 25.65 | DAT22193.1 |
Gp | PDB Header; ID | PDB Molecule | PDB Title | Confidence (%) | Coverage (%) |
---|---|---|---|---|---|
1 | Transferase; 2PA4 | UTP-glucose-1-phosphate uridylyltransferase | Crystal structure of UDP-glucose pyrophosphorylase from Corynebacteria glutamicum in complex with magnesium and UDP-glucose | 100 | 95 |
2 | Oxidoreductase; 3VTF | UDP-glucose 6-dehydrogenase | Structure of UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum | 100 | 97 |
3 | Replication/DNA; 2QBY | Cell division control protein 6 homolog 1 | Crystal structure of a heterodimer of Cdc6/Orc1 initiators bound to origin DNA from Sulfolobus solfataricus | 100 | 89 |
4 | RNA binding protein/RNA/DNA; 7C7L | CRISPR-associated protein Cas14a.1 | Cryo-EM structure of the Cas12f1-sgRNA-target DNA complex | 100 | 82 |
5 | Ferredoxin-like fold; 2F5G | Transposase IS200-like superfamily | Transposase IS200-like family | 100 | 95 |
6 | RNA binding protein/RNA/DNA; 7C7L | CRISPR-associated protein Cas14a.1 | Cryo-EM structure of the Cas12f1-sgRNA-target DNA complex | 100 | 85 |
Gp | Name | Type | Id | InterPro ID |
---|---|---|---|---|
1 | NTP_transferase | CDD | cd04181 | |
Spore coat polysaccharide biosynthesis protein SpsA; chain A | Gene3D | G3DSA:3.90.550.10 | IPR029044 | |
N-acetylmuramate alpha-1-phosphate uridylyltransferase | Panther | PTHR43584:SF6 | ||
NTP_transferase | Pfam | PF00483 | IPR005835 | |
Nucleotide-diphospho-sugar transferases | Superfamily | SSF53448 | IPR029044 | |
2 | NAD(P)-binding Rossmann-like domain | Gene3D | G3DSA:3.40.50.720 | |
Cytochrome C1, transmembrane anchor, C-terminal | Gene3D | G3DSA:1.20.5.100 | ||
UDP-glucose 6-dehydrogenase tuad | Panther | PTHR43750 | ||
UDPG_MGDP_dh_N | Pfam | PF03721 | IPR001732 | |
UDPG_MGDP_dh_C | Pfam | PF03720 | IPR014027 | |
UDPG_MGDP_dh | Pfam | PF00984 | IPR014026 | |
UDPglc_GDPman_dh | PIRSF | PIRSF000124 | IPR017476 | |
UDPglc_DH_bac | PIRSF | PIRSF500134 | IPR028357 | |
UDPG_MGDP_dh_C_a_2_a | SMART | SM00984 | IPR014027 | |
NAD(P)-binding Rossmann-fold domains | Superfamily | SSF51735 | IPR036291 | |
UDP-glucose/GDP-mannose dehydrogenase C-terminal domain | Superfamily | SSF52413 | IPR036220 | |
6-phosphogluconate dehydrogenase C-terminal domain-like | Superfamily | SSF48179 | IPR008927 | |
TIGR03026 | TIGRFAM | TIGR03026 | IPR017476 | |
3 | AAA | CDD | cd00009 | |
Cdc6_C | CDD | cd08768 | IPR015163 | |
Helicase, RuvA protein; domain 3 | Gene3D | G3DSA:1.10.8.60 | ||
P-loop containing nucleoside triphosphate hydrolases | Gene3D | G3DSA:3.40.50.300 | IPR027417 | |
Winged helix-like DNA-binding domain superfamily | Gene3D | G3DSA:1.10.10.10 | IPR036388 | |
Orc1_type_DNA_replic_protein | HAMAP | MF_01407 | IPR014277 | |
Orc1-type DNA replication protein 1 | Panther | PTHR10763:SF22 | ||
AAA_22 | Pfam | PF13401 | IPR003593 | |
Cdc6_C | Pfam | PF09079 | IPR015163 | |
AAA_5 | SMART | SM00382 | IPR003593 | |
Cdc6_C_2 | SMART | SM01074 | IPR015163 | |
P-loop containing nucleoside triphosphate hydrolases | Superfamily | SSF52540 | IPR027417 | |
Winged helix DNA-binding domain | Superfamily | SSF46785 | IPR036390 | |
TIGR02928 | TIGRFAM | TIGR02928 | IPR014277 | |
4 | Transposase | Panther | PTHR30405 | |
Neutral protease | Panther | PTHR30405:SF17 | ||
OrfB_Zn_ribbon | Pfam | PF07282 | IPR010095 | |
Transposase, IS605 OrfB family, central region | TIGRFAM | TIGR01766 | IPR010095 | |
5 | Transposase IS200-like superfamily | Gene3D | G3DSA:3.30.70.1290 | IPR036515 |
IS200-like transposase | Panther | PTHR33360:SF3 | ||
Y1_Tnp | Pfam | PF01797 | IPR002686 | |
Y1_Tnp_2 | SMART | SM01321 | IPR002686 | |
Transposase IS200-like | Superfamily | SSF143422 | IPR036515 | |
6 | Neutral protease | Panther | PTHR30405:SF17 | |
OrfB_IS605 | Pfam | PF01385 | IPR001959 | |
OrfB_Zn_ribbon | Pfam | PF07282 | IPR010095 | |
Transposase, IS605 OrfB family, central region | TIGRFAM | TIGR01766 | IPR010095 |
Contig | System | Hidden Markov Model Accession | Hidden Markov Model Name | Domain E Value | Coverage | Start | End | Strand * |
---|---|---|---|---|---|---|---|---|
1 | PDC-S70 | PDLC05071 | PDC-S70_WP_028295898.1 | 1.20 × 10−9 | 0.969 | 4241 | 4753 | - |
8 | HEC-05 | PDLC04151 | HEC-05_WP_156276309.1 | 2.20 × 10−166 | 0.953 | 197190 | 199046 | - |
16 | SoFic | PDLC03963 | SoFic__SoFic | 1.40 × 10−94 | 0.972 | 31762 | 33003 | + |
17 | SoFic | PDLC03963 | SoFic__SoFic | 2.00 × 10−95 | 0.972 | 17786 | 19027 | - |
19 | DMS_other | PDLC03108 | Specificity_I_00057 | 2.00 × 10−214 | 0.998 | 973 | 2400 | + |
19 | DMS_other | PDLC03040 | REase_I_00001 | 2.70 × 10−118 | 0.977 | 2479 | 5454 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, D.L.; Akache, B.; Chen, W.; McCluskie, M.J. In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Appl. Microbiol. 2024, 4, 607-619. https://doi.org/10.3390/applmicrobiol4020042
Peters DL, Akache B, Chen W, McCluskie MJ. In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Applied Microbiology. 2024; 4(2):607-619. https://doi.org/10.3390/applmicrobiol4020042
Chicago/Turabian StylePeters, Danielle L., Bassel Akache, Wangxue Chen, and Michael J. McCluskie. 2024. "In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170" Applied Microbiology 4, no. 2: 607-619. https://doi.org/10.3390/applmicrobiol4020042
APA StylePeters, D. L., Akache, B., Chen, W., & McCluskie, M. J. (2024). In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Applied Microbiology, 4(2), 607-619. https://doi.org/10.3390/applmicrobiol4020042