In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scaffold Construction
Flye Contig Assembly
3.2. Genomic Investigations of H. salinarum ATCC 33170 Contigs for Prophage-like Elements
3.2.1. PHASTER
3.2.2. BLAST
3.2.3. PHYRE2
3.2.4. InterProScan
3.2.5. PADLOC
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eichler, J. Halobacterium salinarum: Life with More than a Grain of Salt: This Article Is Part of the Microbe Profiles Collection. Microbiology 2023, 169, 001327. [Google Scholar] [CrossRef]
- McCready, S.; Marcello, L. Repair of UV Damage in Halobacterium salinarum. Biochem. Soc. Trans. 2003, 31, 694–698. [Google Scholar] [CrossRef]
- McCluskie, M.J.; Deschatelets, L.; Krishnan, L. Sulfated Archaeal Glycolipid Archaeosomes as a Safe and Effective Vaccine Adjuvant for Induction of Cell-Mediated Immunity. Hum. Vaccines Immunother. 2017, 13, 2772–2779. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; Deschatelets, L.; Harrison, B.A.; Dudani, R.; Stark, F.C.; Jia, Y.; Landi, A.; Law, J.L.M.; Logan, M.; Hockman, D.; et al. Effect of Different Adjuvants on the Longevity and Strength of Humoral and Cellular Immune Responses to the HCV Envelope Glycoproteins. Vaccines 2019, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- Akache, B.; Renner, T.M.; Tran, A.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Duque, D.; Haukenfrers, J.; Rossotti, M.A.; Gaudreault, F.; et al. Immunogenic and Efficacious SARS-CoV-2 Vaccine Based on Resistin-Trimerized Spike Antigen SmT1 and SLA Archaeosome Adjuvant. Sci. Rep. 2021, 11, 21849. [Google Scholar] [CrossRef] [PubMed]
- Renner, T.M.; Akache, B.; Stuible, M.; Rohani, N.; Cepero-Donates, Y.; Deschatelets, L.; Dudani, R.; Harrison, B.A.; Baardsnes, J.; Koyuturk, I.; et al. Tuning the Immune Response: Sulfated Archaeal Glycolipid Archaeosomes as an Effective Vaccine Adjuvant for Induction of Humoral and Cell-Mediated Immunity towards the SARS-CoV-2 Omicron Variant of Concern. Front. Immunol. 2023, 14, 1182556. [Google Scholar] [CrossRef]
- Luk, A.W.S.; Williams, T.J.; Erdmann, S.; Papke, R.T.; Cavicchioli, R. Viruses of Haloarchaea. Life 2014, 4, 681–715. [Google Scholar] [CrossRef]
- Atanasova, N.S.; Roine, E.; Oren, A.; Bamford, D.H.; Oksanen, H.M. Global Network of Specific Virus-Host Interactions in Hypersaline Environments: Haloviruses Are Promiscuous. Environ. Microbiol. 2012, 14, 426–440. [Google Scholar] [CrossRef]
- Alarcón-Schumacher, T.; Naor, A.; Gophna, U.; Erdmann, S. Isolation of a Virus Causing a Chronic Infection in the Archaeal Model Organism Haloferax volcanii Reveals Antiviral Activities of a Provirus. Proc. Natl. Acad. Sci. USA 2022, 119, e2205037119. [Google Scholar] [CrossRef]
- Dyall-Smith, M.L.; Pfeiffer, F.; Klee, K.; Palm, P.; Gross, K.; Schuster, S.C.; Rampp, M.; Oesterhelt, D. Haloquadratum Walsbyi: Limited Diversity in a Global Pond. PLoS ONE 2011, 6, e20968. [Google Scholar] [CrossRef]
- Ken, R.; Hackett, N.R. Halobacterium Halobium Strains Lysogenic for Phage Phi H Contain a Protein Resembling Coliphage Repressors. J. Bacteriol. 1991, 173, 955–960. [Google Scholar] [CrossRef] [PubMed]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 Web Portal for Protein Modeling, Prediction and Analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-Scale Protein Function Classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; Gwadz, M.; Lu, S.; Marchler, G.H.; Song, J.S.; Thanki, N.; Yamashita, R.A.; et al. The Conserved Domain Database in 2023. Nucleic Acids Res. 2023, 51, D384–D388. [Google Scholar] [CrossRef] [PubMed]
- Lees, J.; Yeats, C.; Perkins, J.; Sillitoe, I.; Rentzsch, R.; Dessailly, B.H.; Orengo, C. Gene3D: A Domain-Based Resource for Comparative Genomics, Functional Annotation and Protein Network Analysis. Nucleic Acids Res. 2012, 40, D465–D471. [Google Scholar] [CrossRef] [PubMed]
- Pedruzzi, I.; Rivoire, C.; Auchincloss, A.H.; Coudert, E.; Keller, G.; de Castro, E.; Baratin, D.; Cuche, B.A.; Bougueleret, L.; Poux, S.; et al. HAMAP in 2015: Updates to the Protein Family Classification and Annotation System. Nucleic Acids Res. 2015, 43, D1064–D1070. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.-P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H. PIRSF: Family Classification System at the Protein Information Resource. Nucleic Acids Res. 2004, 32, D112–D114. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Gough, J.; Karplus, K.; Hughey, R.; Chothia, C. Assignment of Homology to Genome Sequences Using a Library of Hidden Markov Models That Represent All Proteins of Known Structure. J. Mol. Biol. 2001, 313, 903–919. [Google Scholar] [CrossRef]
- Haft, D.H.; Loftus, B.J.; Richardson, D.L.; Yang, F.; Eisen, J.A.; Paulsen, I.T.; White, O. TIGRFAMs: A Protein Family Resource for the Functional Identification of Proteins. Nucleic Acids Res. 2001, 29, 41–43. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.J.; Meaden, S.; Mestre, M.R.; Palmer, C.; Toro, N.; Fineran, P.C.; Jackson, S.A. PADLOC: A Web Server for the Identification of Antiviral Defence Systems in Microbial Genomes. Nucleic Acids Res. 2022, 50, W541–W550. [Google Scholar] [CrossRef] [PubMed]
- Harms, A.; Stanger, F.V.; Dehio, C. Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Annu. Rev. Microbiol. 2016, 70, 341–360. [Google Scholar] [CrossRef]
- Engel, P.; Goepfert, A.; Stanger, F.V.; Harms, A.; Schmidt, A.; Schirmer, T.; Dehio, C. Adenylylation Control by Intra- or Intermolecular Active-Site Obstruction in Fic Proteins. Nature 2012, 482, 107–110. [Google Scholar] [CrossRef] [PubMed]
- Goldfarb, T.; Sberro, H.; Weinstock, E.; Cohen, O.; Doron, S.; Charpak-Amikam, Y.; Afik, S.; Ofir, G.; Sorek, R. BREX Is a Novel Phage Resistance System Widespread in Microbial Genomes. EMBO J. 2015, 34, 169–183. [Google Scholar] [CrossRef]
- Bravo, J.P.K.; Aparicio-Maldonado, C.; Nobrega, F.L.; Brouns, S.J.J.; Taylor, D.W. Structural Basis for Broad Anti-Phage Immunity by DISARM. Nat. Commun. 2022, 13, 2987. [Google Scholar] [CrossRef]
- Millman, A.; Melamed, S.; Leavitt, A.; Doron, S.; Bernheim, A.; Hör, J.; Garb, J.; Bechon, N.; Brandis, A.; Lopatina, A.; et al. An Expanded Arsenal of Immune Systems That Protect Bacteria from Phages. Cell Host Microbe 2022, 30, 1556–1569.e5. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Kim, J.-S.; Taffner, J.; Berg, G.; Ryu, C.-M. Archaea, Tiny Helpers of Land Plants. Comput. Struct. Biotechnol. J. 2020, 18, 2494–2500. [Google Scholar] [CrossRef] [PubMed]
- Torregrosa-Crespo, J.; Martínez-Espinosa, R.M.; Esclapez, J.; Bautista, V.; Pire, C.; Camacho, M.; Richardson, D.J.; Bonete, M.J. Anaerobic Metabolism in Haloferax Genus. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 68, pp. 41–85. ISBN 978-0-12-804823-8. [Google Scholar]
- Hochstein, L.I.; Lang, F. Purification and Properties of a Dissimilatory Nitrate Reductase from Haloferax Denitrificans. Arch. Biochem. Biophys. 1991, 288, 380–385. [Google Scholar] [CrossRef]
- Demina, T.A.; Oksanen, H.M. Pleomorphic Archaeal Viruses: The Family Pleolipoviridae Is Expanding by Seven New Species. Arch. Virol. 2020, 165, 2723–2731. [Google Scholar] [CrossRef]
- Pietilä, M.K.; Roine, E.; Paulin, L.; Kalkkinen, N.; Bamford, D.H. An ssDNA Virus Infecting Archaea: A New Lineage of Viruses with a Membrane Envelope. Mol. Microbiol. 2009, 72, 307–319. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Wang, S.; Yang, D.; Cheng, Y.; Hu, J.; Chen, J.; Mei, Y.; Shen, P.; Bamford, D.H.; et al. Temperate Membrane-Containing Halophilic Archaeal Virus SNJ1 Has a Circular dsDNA Genome Identical to That of Plasmid pHH205. Virology 2012, 434, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Chen, Z.; Wang, Y.; Gong, H.; Sima, L.; Wang, J.; Ouyang, S.; Gan, W.; Krupovic, M.; Chen, X.; et al. ORF4 of the Temperate Archaeal Virus SNJ1 Governs the Lysis-Lysogeny Switch and Superinfection Immunity. J. Virol. 2020, 94, e00841-20. [Google Scholar] [CrossRef]
- Witte, A.; Baranyi, U.; Klein, R.; Sulzner, M.; Luo, C.; Wanner, G.; Krüger, D.H.; Lubitz, W. Characterization of Natronobacterium magadii Phage ΦCh1, a Unique Archaeal Phage Containing DNA and RNA. Mol. Microbiol. 1997, 23, 603–616. [Google Scholar] [CrossRef] [PubMed]
- Demina, T.A.; Atanasova, N.S.; Pietilä, M.K.; Oksanen, H.M.; Bamford, D.H. Vesicle-like Virion of Haloarcula hispanica Pleomorphic Virus 3 Preserves High Infectivity in Saturated Salt. Virology 2016, 499, 40–51. [Google Scholar] [CrossRef]
- Lee, S.T.M.; Ding, J.; Chiang, P.; Dyall-Smith, M.; Tang, S. Insights into Gene Regulation of the Halovirus His2 Infecting Haloarcula hispanica. MicrobiologyOpen 2020, 9, e1016. [Google Scholar] [CrossRef]
- Bath, C.; Cukalac, T.; Porter, K.; Dyall-Smith, M.L. His1 and His2 Are Distantly Related, Spindle-Shaped Haloviruses Belonging to the Novel Virus Group, Salterprovirus. Virology 2006, 350, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Pietilä, M.K.; Laurinavičius, S.; Sund, J.; Roine, E.; Bamford, D.H. The Single-Stranded DNA Genome of Novel Archaeal Virus Halorubrum Pleomorphic Virus 1 Is Enclosed in the Envelope Decorated with Glycoprotein Spikes. J. Virol. 2010, 84, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.L.; Pfeifer, F.; Dyall-Smith, M.L. Analysis of the Halobacterial Plasmid pHK2 Minimal Replicon. Gene 1995, 153, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Thoden, J.B.; Holden, H.M. Active Site Geometry of Glucose-1-Phosphate Uridylyltransferase. Protein Sci. 2007, 16, 1379–1388. [Google Scholar] [CrossRef]
- Alonso, M.D.; Lomako, J.; Lomako, W.M.; Whelan, W.J. A New Look at the Biogenesis of Glycogen. FASEB J. 1995, 9, 1126–1137. [Google Scholar] [CrossRef] [PubMed]
- Holden, H.M.; Rayment, I.; Thoden, J.B. Structure and Function of Enzymes of the Leloir Pathway for Galactose Metabolism. J. Biol. Chem. 2003, 278, 43885–43888. [Google Scholar] [CrossRef] [PubMed]
- Jaroentomeechai, T.; Stark, J.C.; Natarajan, A.; Glasscock, C.J.; Yates, L.E.; Hsu, K.J.; Mrksich, M.; Jewett, M.C.; DeLisa, M.P. Single-Pot Glycoprotein Biosynthesis Using a Cell-Free Transcription-Translation System Enriched with Glycosylation Machinery. Nat. Commun. 2018, 9, 2686. [Google Scholar] [CrossRef] [PubMed]
- Egger, S.; Chaikuad, A.; Kavanagh, K.L.; Oppermann, U.; Nidetzky, B. UDP-Glucose Dehydrogenase: Structure and Function of a Potential Drug Target. Biochem. Soc. Trans. 2010, 38, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Dueber, E.L.C.; Corn, J.E.; Bell, S.D.; Berger, J.M. Replication Origin Recognition and Deformation by a Heterodimeric Archaeal Orc1 Complex. Science 2007, 317, 1210–1213. [Google Scholar] [CrossRef]
- Duderstadt, K.E.; Chuang, K.; Berger, J.M. DNA Stretching by Bacterial Initiators Promotes Replication Origin Opening. Nature 2011, 478, 209–213. [Google Scholar] [CrossRef]
- Takeda, S.N.; Nakagawa, R.; Okazaki, S.; Hirano, H.; Kobayashi, K.; Kusakizako, T.; Nishizawa, T.; Yamashita, K.; Nishimasu, H.; Nureki, O. Structure of the Miniature Type V-F CRISPR-Cas Effector Enzyme. Mol. Cell 2021, 81, 558–570.e3. [Google Scholar] [CrossRef]
- Xiao, R.; Li, Z.; Wang, S.; Han, R.; Chang, L. Structural Basis for Substrate Recognition and Cleavage by the Dimerization-Dependent CRISPR–Cas12f Nuclease. Nucleic Acids Res. 2021, 49, 4120–4128. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.B.; Burstein, D.; Chen, J.S.; Paez-Espino, D.; Ma, E.; Witte, I.P.; Cofsky, J.C.; Kyrpides, N.C.; Banfield, J.F.; Doudna, J.A. Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science 2018, 362, 839–842. [Google Scholar] [CrossRef]
- Karvelis, T.; Bigelyte, G.; Young, J.K.; Hou, Z.; Zedaveinyte, R.; Budre, K.; Paulraj, S.; Djukanovic, V.; Gasior, S.; Silanskas, A.; et al. PAM Recognition by Miniature CRISPR–Cas12f Nucleases Triggers Programmable Double-Stranded DNA Target Cleavage. Nucleic Acids Res. 2020, 48, 5016–5023. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Yoon, J.Y.; Kim, H.S.; Kang, J.Y.; Kim, K.H.; Kim, D.J.; Ha, J.Y.; Mikami, B.; Yoon, H.J.; Suh, S.W. Crystal Structure of a Metal Ion-Bound IS200 Transposase. J. Biol. Chem. 2006, 281, 4261–4266. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Espín, D.; Mateu, M.G.; Villar, L.; Marina, A.; Salas, M.; Meijer, W.J.J. Phage Φ29 DNA Replication Organizer Membrane Protein P16.7 Contains a Coiled Coil and a Dimeric, Homeodomain-Related, Functional Domain. J. Biol. Chem. 2004, 279, 50437–50445. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, R.; Zhao, D.; Xiang, H. Adaptation of the Haloarcula hispanica CRISPR-Cas System to a Purified Virus Strictly Requires a Priming Process. Nucleic Acids Res. 2014, 42, 2483–2492. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.-K.; Stachler, A.-E.; Brendel, J.; Stoll, B.; Fischer, S.; Haas, K.A.; Schwarz, T.S.; Alkhnbashi, O.S.; Sharma, K.; Urlaub, H.; et al. The Nuts and Bolts of the Haloferax CRISPR-Cas System I-B. RNA Biol. 2019, 16, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef]
- Mercier, C.; Thies, D.; Zhong, L.; Raftery, M.J.; Erdmann, S. Characterization of an Archaeal Virus-Host System Reveals Massive Genomic Rearrangements in a Laboratory Strain. Front. Microbiol. 2023, 14, 1274068. [Google Scholar] [CrossRef]
- Costa, A.R.; Van Den Berg, D.F.; Esser, J.Q.; Muralidharan, A.; Van Den Bossche, H.; Bonilla, B.E.; Van Der Steen, B.A.; Haagsma, A.C.; Fluit, A.C.; Nobrega, F.L.; et al. Accumulation of Defense Systems in Phage-Resistant Strains of Pseudomonas aeruginosa. Sci. Adv. 2024, 10, eadj0341. [Google Scholar] [CrossRef] [PubMed]
- Kucukyildirim, S.; Ozdemirel, H.O.; Lynch, M. Similar Mutation Rates but Different Mutation Spectra in Moderate and Extremely Halophilic Archaea. G3 2023, 13, jkac303. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Losensky, G.; Marchfelder, A.; Habermann, B.; Dyall-Smith, M.L. Whole-Genome Comparison between the Type Strain of Halobacterium salinarum (DSM 3754 T) and the Laboratory Strains R1 and NRC-1. MicrobiologyOpen 2020, 9, e974. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Dyall-Smith, M. Genome Comparison Reveals That Halobacterium salinarum 63-R2 Is the Origin of the Twin Laboratory Strains NRC-1 and R1. MicrobiologyOpen 2023, 12, e1365. [Google Scholar] [CrossRef] [PubMed]
Statistics | All Contigs |
---|---|
Number of contigs | 21 |
Min Length (bp) | 1323 |
Median Length (bp) | 12,424 |
Mean Length (bp) | 115,285 |
Max Length (bp) | 1,030,011 |
N50 Length (bp) | 718,706 |
Gp | CDS Position | BLAST Hit | E-Value |
---|---|---|---|
1 | 3957–4709 * | PHAGE_Sphing_PAU_NC_019521: gp187; PP_02344; phage(gi435844690) | 5.71 × 10−27 |
2 | 4773–6065 | PHAGE_Vibrio_vB_VchM_Kuja_NC_048827: pore-forming tail tip protein; PP_02345; phage(gi100139) | 1.02 × 10−40 |
3 | 6244–7476 * | PHAGE_Archae_virus_NC_008695: hypothetical protein; PP_02346; phage(gi119757001) | 7.73 × 10−15 |
4 | 7705–8961 * | PHAGE_Rhodot_RM378_NC_004735: putative transposase; PP_02347; phage(gi30044048) | 3.25 × 10−16 |
5 | 8963–9355 * | PHAGE_Sulfol_SMV3_NC_029103: putative transposase IS200-family protein; PP_02348; phage(gi985760792) | 1.14 × 10−32 |
6 | 9745–11025 * | PHAGE_Hypert_2_NC_014321: IS element Dka2 orfB; PP_02349; phage(gi300116745) | 2.06 × 10−17 |
Gp | Phage | Accession | Taxonomy | Genome Length (bp) |
---|---|---|---|---|
1 | Sphingomonas phage PAU | NC_019521 | Myoviridae | 219,372 |
2 | Vibrio phage vB_VchM_Kuja | NC_048827.1 | Ackermannviridae | 148,180 |
3 | Archaeal BJ1 virus | NC_008695.1 | Siphoviridae | 42,271 |
4 | Rhodothermus phage RM378 | NC_004735.1 | Myoviridae | 129,908 |
5 | Sulfolobus monocaudavirus SMV3 | NC_029103 | Bicaudaviridae | 64,323 |
6 | Hyperthermophilic Archaeal Virus 2 | NC_014321 | Unclassified archaeal virus | 17,666 |
Gp | Description | Scientific Name | Morphology | Coverage (%) | E-Value | ID (%) | Accession Number |
---|---|---|---|---|---|---|---|
1 | gp187 | Sphingomonas phage PAU | Myovirus | 79 | 2.00 × 10−25 | 32.67 | YP_007006794.1 |
2 | TPA: MAG TPA: putative UDP-glucose 6-dehydrogenase | Siphoviridae sp. ctCCX1 | Siphovirus | 98 | 1.00 × 10−91 | 38.27 | DAD67937.1 |
3 | Orc1-type DNA replication protein | Halobacterium virus ChaoS9 | Myovirus | 89 | 5.00 × 10−11 | 25.13 | YP_010078015.1 |
4 | Transposase | Halobacterium phage phiH | Myovirus | 100 | 0 | 100.00 | YP_009981874.1 |
5 | IS200/IS605-like element ISH1-8 family transposase | Halobacterium phage phiH | Myovirus | 100 | 2.00 × 10−91 | 100.00 | YP_009981873.1 |
6 | TPA: MAG TPA: putative transposase | Siphoviridae sp. | Siphovirus | 84 | 8.00 × 10−26 | 25.65 | DAT22193.1 |
Gp | PDB Header; ID | PDB Molecule | PDB Title | Confidence (%) | Coverage (%) |
---|---|---|---|---|---|
1 | Transferase; 2PA4 | UTP-glucose-1-phosphate uridylyltransferase | Crystal structure of UDP-glucose pyrophosphorylase from Corynebacteria glutamicum in complex with magnesium and UDP-glucose | 100 | 95 |
2 | Oxidoreductase; 3VTF | UDP-glucose 6-dehydrogenase | Structure of UDP-glucose dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum | 100 | 97 |
3 | Replication/DNA; 2QBY | Cell division control protein 6 homolog 1 | Crystal structure of a heterodimer of Cdc6/Orc1 initiators bound to origin DNA from Sulfolobus solfataricus | 100 | 89 |
4 | RNA binding protein/RNA/DNA; 7C7L | CRISPR-associated protein Cas14a.1 | Cryo-EM structure of the Cas12f1-sgRNA-target DNA complex | 100 | 82 |
5 | Ferredoxin-like fold; 2F5G | Transposase IS200-like superfamily | Transposase IS200-like family | 100 | 95 |
6 | RNA binding protein/RNA/DNA; 7C7L | CRISPR-associated protein Cas14a.1 | Cryo-EM structure of the Cas12f1-sgRNA-target DNA complex | 100 | 85 |
Gp | Name | Type | Id | InterPro ID |
---|---|---|---|---|
1 | NTP_transferase | CDD | cd04181 | |
Spore coat polysaccharide biosynthesis protein SpsA; chain A | Gene3D | G3DSA:3.90.550.10 | IPR029044 | |
N-acetylmuramate alpha-1-phosphate uridylyltransferase | Panther | PTHR43584:SF6 | ||
NTP_transferase | Pfam | PF00483 | IPR005835 | |
Nucleotide-diphospho-sugar transferases | Superfamily | SSF53448 | IPR029044 | |
2 | NAD(P)-binding Rossmann-like domain | Gene3D | G3DSA:3.40.50.720 | |
Cytochrome C1, transmembrane anchor, C-terminal | Gene3D | G3DSA:1.20.5.100 | ||
UDP-glucose 6-dehydrogenase tuad | Panther | PTHR43750 | ||
UDPG_MGDP_dh_N | Pfam | PF03721 | IPR001732 | |
UDPG_MGDP_dh_C | Pfam | PF03720 | IPR014027 | |
UDPG_MGDP_dh | Pfam | PF00984 | IPR014026 | |
UDPglc_GDPman_dh | PIRSF | PIRSF000124 | IPR017476 | |
UDPglc_DH_bac | PIRSF | PIRSF500134 | IPR028357 | |
UDPG_MGDP_dh_C_a_2_a | SMART | SM00984 | IPR014027 | |
NAD(P)-binding Rossmann-fold domains | Superfamily | SSF51735 | IPR036291 | |
UDP-glucose/GDP-mannose dehydrogenase C-terminal domain | Superfamily | SSF52413 | IPR036220 | |
6-phosphogluconate dehydrogenase C-terminal domain-like | Superfamily | SSF48179 | IPR008927 | |
TIGR03026 | TIGRFAM | TIGR03026 | IPR017476 | |
3 | AAA | CDD | cd00009 | |
Cdc6_C | CDD | cd08768 | IPR015163 | |
Helicase, RuvA protein; domain 3 | Gene3D | G3DSA:1.10.8.60 | ||
P-loop containing nucleoside triphosphate hydrolases | Gene3D | G3DSA:3.40.50.300 | IPR027417 | |
Winged helix-like DNA-binding domain superfamily | Gene3D | G3DSA:1.10.10.10 | IPR036388 | |
Orc1_type_DNA_replic_protein | HAMAP | MF_01407 | IPR014277 | |
Orc1-type DNA replication protein 1 | Panther | PTHR10763:SF22 | ||
AAA_22 | Pfam | PF13401 | IPR003593 | |
Cdc6_C | Pfam | PF09079 | IPR015163 | |
AAA_5 | SMART | SM00382 | IPR003593 | |
Cdc6_C_2 | SMART | SM01074 | IPR015163 | |
P-loop containing nucleoside triphosphate hydrolases | Superfamily | SSF52540 | IPR027417 | |
Winged helix DNA-binding domain | Superfamily | SSF46785 | IPR036390 | |
TIGR02928 | TIGRFAM | TIGR02928 | IPR014277 | |
4 | Transposase | Panther | PTHR30405 | |
Neutral protease | Panther | PTHR30405:SF17 | ||
OrfB_Zn_ribbon | Pfam | PF07282 | IPR010095 | |
Transposase, IS605 OrfB family, central region | TIGRFAM | TIGR01766 | IPR010095 | |
5 | Transposase IS200-like superfamily | Gene3D | G3DSA:3.30.70.1290 | IPR036515 |
IS200-like transposase | Panther | PTHR33360:SF3 | ||
Y1_Tnp | Pfam | PF01797 | IPR002686 | |
Y1_Tnp_2 | SMART | SM01321 | IPR002686 | |
Transposase IS200-like | Superfamily | SSF143422 | IPR036515 | |
6 | Neutral protease | Panther | PTHR30405:SF17 | |
OrfB_IS605 | Pfam | PF01385 | IPR001959 | |
OrfB_Zn_ribbon | Pfam | PF07282 | IPR010095 | |
Transposase, IS605 OrfB family, central region | TIGRFAM | TIGR01766 | IPR010095 |
Contig | System | Hidden Markov Model Accession | Hidden Markov Model Name | Domain E Value | Coverage | Start | End | Strand * |
---|---|---|---|---|---|---|---|---|
1 | PDC-S70 | PDLC05071 | PDC-S70_WP_028295898.1 | 1.20 × 10−9 | 0.969 | 4241 | 4753 | - |
8 | HEC-05 | PDLC04151 | HEC-05_WP_156276309.1 | 2.20 × 10−166 | 0.953 | 197190 | 199046 | - |
16 | SoFic | PDLC03963 | SoFic__SoFic | 1.40 × 10−94 | 0.972 | 31762 | 33003 | + |
17 | SoFic | PDLC03963 | SoFic__SoFic | 2.00 × 10−95 | 0.972 | 17786 | 19027 | - |
19 | DMS_other | PDLC03108 | Specificity_I_00057 | 2.00 × 10−214 | 0.998 | 973 | 2400 | + |
19 | DMS_other | PDLC03040 | REase_I_00001 | 2.70 × 10−118 | 0.977 | 2479 | 5454 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, D.L.; Akache, B.; Chen, W.; McCluskie, M.J. In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Appl. Microbiol. 2024, 4, 607-619. https://doi.org/10.3390/applmicrobiol4020042
Peters DL, Akache B, Chen W, McCluskie MJ. In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Applied Microbiology. 2024; 4(2):607-619. https://doi.org/10.3390/applmicrobiol4020042
Chicago/Turabian StylePeters, Danielle L., Bassel Akache, Wangxue Chen, and Michael J. McCluskie. 2024. "In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170" Applied Microbiology 4, no. 2: 607-619. https://doi.org/10.3390/applmicrobiol4020042
APA StylePeters, D. L., Akache, B., Chen, W., & McCluskie, M. J. (2024). In Silico Prophage Analysis of Halobacterium salinarum ATCC 33170. Applied Microbiology, 4(2), 607-619. https://doi.org/10.3390/applmicrobiol4020042