The Influence of Technological Shifts in the Food Chain on the Emergence of Foodborne Pathogens: An Overview
Abstract
:1. Introduction
2. The Emergence of Foodborne Pathogens
3. Factors Contributing to the Emergence of Foodborne Pathogens
4. Emerging Foodborne Diseases Linked to Industrial Food Technology Changes
5. Technological Changes in the Food Chain
6. Impact of Contamination Steps in the Food Chain on the Emergence of New Foodborne Illnesses
6.1. Production of Raw Materials (Harvesting and Slaughtering)
6.2. Processing
6.3. Preparation and Handling
6.4. Storage
6.5. Packaging
6.6. Transportation/Distribution
7. Food Industry Demographics (Globalization)
8. Outbreaks Associated with Emerging Foodborne Pathogens Related to Technology and Industry
9. Future of Work and Recommendations
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef]
- Elbehiry, A.; Abalkhail, A.; Marzouk, E.; Elmanssury, A.E.; Almuzaini, A.M.; Alfheeaid, H.; Alshahrani, M.T.; Huraysh, N.; Ibrahem, M.; Alzaben, F.; et al. An Overview of the Public Health Challenges in Diagnosing and Controlling Human Foodborne Pathogens. Vaccines 2023, 11, 725. [Google Scholar] [CrossRef]
- Tauxe, R.V. Emerging Foodborne Pathogens. Int. J. Food Microbiol. 2002, 78, 31–41. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne Illness Acquired in the United States—Major Pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.; Ford, L.; Glass, K.; Hall, G. Foodborne Illness, Australia, circa 2000 and circa 2010. Emerg. Infect. Dis. 2014, 20, 1857–1864. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). FAO, WHO Set an Example of Collaborative Action for Safe Food with a Systems Approach. 2021. Available online: https://www.who.int/europe/news/item/08-06-2021-fao-who-set-an-example-of-collaborative-action-for-safe-food-with-a-systems-approach (accessed on 14 December 2023).
- De Sousa, C.P. The Impact of Food Manufacturing Practices on Food Borne Diseases. Braz. Arch. Biol. Technol. 2008, 51, 615–623. [Google Scholar] [CrossRef]
- Schirone, M.; Visciano, P.; Tofalo, R.; Suzzi, G. Editorial: Foodborne Pathogens: Hygiene and Safety. Front. Microbiol. 2019, 10, 1974. [Google Scholar] [CrossRef]
- Beeton-Kempen, N. Technology Networks Emerging Technologies in Combating Foodborne Illness. Technology Networks, Applied Sciences. 2019. Available online: https://www.technologynetworks.com/applied-sciences/articles/emerging-technologies-in-combating-foodborne-illness-315787 (accessed on 10 December 2023).
- Belina, D.; Hailu, Y.; Gobena, T.; Hald, T.; Njage, P.M.K. Prevalence and Epidemiological Distribution of Selected Foodborne Pathogens in Human and Different Environmental Samples in Ethiopia: A Systematic Review and Meta-Analysis. One Health Outlook 2021, 3, 19. [Google Scholar] [CrossRef] [PubMed]
- CDC. How Food Gets Contaminated—The Food Production Chain. Available online: https://www.cdc.gov/foodsafety/production-chain.html (accessed on 10 December 2023).
- Smith, J.L.; Fratamico, P.M. Emerging and Re-Emerging Foodborne Pathogens. Foodborne Pathog. Dis. 2018, 15, 737–757. [Google Scholar] [CrossRef]
- Koutsoumanis, K.P.; Lianou, A.; Sofos, J.N. Food Safety: Emerging Pathogens. Encycl. Agric. Food Syst. 2014, 2014, 250–272. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Al-Holy, M.A.; Shahbaz, H.M.; Al-Nabulsi, A.A.; Abu Ghoush, M.H.; Osaili, T.M.; Ayyash, M.M.; Holley, R.A. Emergence of Antibiotic Resistance InListeria MonocytogenesIsolated from Food Products: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1277–1292. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, J.F.; Grace, D. The Consequences of Human Actions on Risks for Infectious Diseases: A Review. Infect. Ecol. Epidemiol. 2015, 5, 30048. [Google Scholar] [CrossRef] [PubMed]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging Human Infectious Diseases and the Links to Global Food Production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Saber, T.; Samir, M.; El-Mekkawy, R.M.; Ariny, E.; El-Sayed, S.R.; Enan, G.; Abdelatif, S.H.; Askora, A.; Merwad, A.M.A.; Tartor, Y.H. Methicillin- and Vancomycin-Resistant Staphylococcus Aureus from Humans and Ready-To-Eat Meat: Characterization of Antimicrobial Resistance and Biofilm Formation Ability. Front. Microbiol. 2022, 12, 735494. [Google Scholar] [CrossRef] [PubMed]
- Tartor, Y.H.; Gharieb, R.M.A.; Abd El-Aziz, N.K.; El Damaty, H.M.; Enany, S.; Khalifa, E.; Attia, A.S.A.; Abdellatif, S.S.; Ramadan, H. Virulence Determinants and Plasmid-Mediated Colistin Resistance Mcr Genes in Gram-Negative Bacteria Isolated from Bovine Milk. Front. Cell. Infect. Microbiol. 2021, 11, 761417. [Google Scholar] [CrossRef] [PubMed]
- Behravesh, C.B.; Williams, I.T.; Tauxe, R.V. Emerging Foodborne Pathogens and Problems: Expanding Prevention Efforts before Slaughter or Harvest. In Improving Food Safety through a One Health Approach: Workshop Summary; National Academies Press (US): Washington, DC, USA, 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK114501/ (accessed on 30 November 2023).
- Gabriël, S.; Dorny, P.; Saelens, G.; Dermauw, V. Foodborne Parasites and Their Complex Life Cycles Challenging Food Safety in Different Food Chains. Foods 2022, 12, 142. [Google Scholar] [CrossRef]
- Han, D.; Chen, J.; Chen, W.; Wang, Y. Bongkrekic Acid and Burkholderia Gladioli Pathovar Cocovenenans: Formidable Foe and Ascending Threat to Food Safety. Foods 2023, 12, 3926. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Taybeh, A.O.; Al-Nabulsi, A.; Al-Holy, M.; Hatmal, M.M.; Alzyoud, J.; Aolymat, I.; Abughoush, M.H.; Shahbaz, H.; Alzyoud, A.; et al. Common and Potential Emerging Foodborne Viruses: A Comprehensive Review. Life 2024, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Newell, D.G.; Koopmans, M.; Verhoef, L.; Duizer, E.; Aidara-Kane, A.; Sprong, H.; Opsteegh, M.; Langelaar, M.; Threfall, J.; Scheutz, F.; et al. Food-Borne Diseases—The Challenges of 20 years Ago Still Persist While New Ones Continue to Emerge. Int. J. Food Microbiol. 2010, 139, S3–S15. [Google Scholar] [CrossRef] [PubMed]
- Altekruse, S.F.; Swerdlow, D.L.; Wells, S.J. Factors in the Emergence of Food Borne Diseases. Vet. Clin. N. Am. Food Anim. Pract. 1998, 14, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tack, D.M.; Marder, E.P.; Griffin, P.M.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary Incidence and Trends of Infections with Pathogens Transmitted Commonly through Food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2015–2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Michino, H.; Araki, K.; Minami, S.; Takaya, S.; Sakai, N.; Miyazaki, M.; Ono, A.; Yanagawa, H. Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am. J. Epidemiol. 1999, 150, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; El Zowalaty, M.E.; Rahman, A.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A. Emerging Zoonoses: The Challenge for Public Health and Biodefense. Prev. Vet. Med. 2008, 86, 216–223. [Google Scholar] [CrossRef]
- Morse, S.S. Factors in the Emergence of Infectious Diseases. Emerg. Infect. Dis. 1995, 1, 7–15. [Google Scholar] [CrossRef]
- Richard, L.; Aenishaenslin, C.; Zinszer, K. Zoonoses and Social Determinants of Health: A Consultation of Canadian Experts. One Health 2020, 12, 100199. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Improving Food Safety through a One Health Approach: Workshop Summary; National Academies Press (US): Washington, DC, USA, 2012. [Google Scholar]
- Smoot, L.; Cordier, J.-L. Emerging Foodborne Pathogens and the Food Industry; Woodhead Publishing: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Seimenis, A.; Battelli, G. Main Challenges in the Control of Zoonoses and Related Foodborne Diseases in the South Mediterranean and Middle East Region. Vet. Ital. 2018, 54, 97–106. [Google Scholar] [CrossRef]
- Badiane, O.; Hendriks, S.L.; Glatzel, K.; Abdelradi, F.; Admassie, A.; Adjaye, J.A.; Ayieko, M.; Bekele, E.; Chaibi, T.; Hag, M.; et al. Policy Options for Food System Transformation in Africa and the Role of Science, Technology and Innovation; Springer Ebooks: Berlin/Heidelberg, Germany, 2023; pp. 713–735. [Google Scholar] [CrossRef]
- Sahoo, M.; Panigrahi, C.; Aradwad, P. Management Strategies Emphasizing Advanced Food Processing Approaches to Mitigate Food Borne Zoonotic Pathogens in Food System. Food Front. 2022, 3, 641–665. [Google Scholar] [CrossRef]
- Tauxe, R.V.; Doyle, M.P.; Kuchenmüller, T.; Schlundt, J.; Stein, C.E. Evolving Public Health Approaches to the Global Challenge of Foodborne Infections. Int. J. Food Microbiol. 2010, 139, S16–S28. [Google Scholar] [CrossRef] [PubMed]
- Altekruse, S.F.; Swerdlow, D.L. The Changing Epidemiology of Foodborne Diseases. Am. J. Med. Sci. 1996, 311, 23–29. [Google Scholar] [CrossRef] [PubMed]
- McArthur, D.B. Emerging Infectious Diseases. Nurs. Clin. N. Am. 2019, 54, 297–311. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Seal, S.; Dharmarajan, G.; Khan, I. Evolution of Pathogen Tolerance and Emerging Infections: A Missing Experimental Paradigm. eLife 2021, 10, e68874. [Google Scholar] [CrossRef] [PubMed]
- Sampedro, F.; McAloon, A.; Yee, W.; Fan, X.; Geveke, D.J. Cost Analysis and Environmental Impact of Pulsed Electric Fields and High Pressure Processing in Comparison with Thermal Pasteurization. Food Bioprocess Technol. 2014, 7, 1928–1937. [Google Scholar] [CrossRef]
- Shahbaz, H.M.; Javed, F.; Park, J. Current Challenges and Future Applications of HPP; Springer: Cham, Switzerland, 2023; pp. 71–72. [Google Scholar] [CrossRef]
- Muthuvelu, K.S.; Ethiraj, B.; Pramnik, S.; Raj, N.; Venkataraman, S.; Rajendran, D.S.; Bharathi, P.; Palanisamy, E.; Narayanan, A.; Vaidyanathan, V.K.; et al. Biopreservative Technologies of Food: An Alternative to Chemical Preservation and Recent Developments. Food Sci. Biotechnol. 2023, 32, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P. Recent Approaches in Food Bio-Preservation—A Review. Open Vet. J. 2018, 8, 104. [Google Scholar] [CrossRef]
- Cassani, L.; Gomez-Zavaglia, A.; Simal-Gandara, J. Technological Strategies Ensuring the Safe Arrival of Beneficial Microorganisms to the Gut: From Food Processing and Storage to Their Passage through the Gastrointestinal Tract. Food Res. Int. 2020, 129, 108852. [Google Scholar] [CrossRef]
- Schneider, S.A. Examining Food Safety from a Food Systems Perspective: The Need for a Holistic Approach. Wis. Law Rev. 2014, 2014, 397–419. Available online: https://ssrn.com/abstract=3493366 (accessed on 10 January 2024).
- Palmer, J. The Pros and Cons of Emerging Technology in Our Food System. Available online: https://ccafs.cgiar.org/news/pros-and-cons-emerging-technology-our-food-system (accessed on 10 November 2023).
- Breiman, R.F. Impact of Technology on the Emergence of Infectious Diseases. Epidemiol. Rev. 1996, 18, 4–9. [Google Scholar] [CrossRef]
- Foxman, B.; Mehta, S. Impact of Technological Developments on Infectious Disease Epidemiology: Lessons from the First 100 Years of AJE. Am. J. Epidemiol. 2023, 192, 1820–1826. [Google Scholar] [CrossRef]
- Skovgaard, N. New Trends in Emerging Pathogens. Int. J. Food Microbiol. 2007, 120, 217–224. [Google Scholar] [CrossRef]
- Nerín, C.; Aznar, M.; Carrizo, D. Food Contamination during Food Process. Trends Food Sci. Technol. 2016, 48, 63–68. [Google Scholar] [CrossRef]
- Lebelo, K.; Malebo, N.; Mochane, M.J.; Masinde, M. Chemical Contamination Pathways and the Food Safety Implications along the Various Stages of Food Production: A Review. Int. J. Environ. Res. Public Health 2021, 18, 5795. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Cyclosporiasis Illnesses in the United States. 2023. Available online: https://www.cdc.gov/parasites/cyclosporiasis/outbreaks/2023/index.html (accessed on 5 December 2023).
- Doyle, M.P.; Erickson, M.C. Opportunities for Mitigating Pathogen Contamination during On-Farm Food Production. Int. J. Food Microbiol. 2012, 152, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Oliver, J.D.; Alam, M.; Ali, A.; Waldor, M.K.; Qadri, F.; Martinez-Urtaza, J. Vibrio spp. Infections. Nat. Rev. Dis. Primers 2018, 4, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ghaju Shrestha, R.; Tanaka, Y.; Haramoto, E. A Review on the Prevalence of Arcobacter in Aquatic Environments. Water 2022, 14, 1266. [Google Scholar] [CrossRef]
- Houf, K.; Stephan, R. Isolation and characterization of the emerging food-borne pathogen Arcobacter from human stool. J. Microbiol. Methods 2007, 68, 408–413. [Google Scholar] [CrossRef]
- Borji, S.; Kadivarian, S.; Dashtbin, S.; Kooti, S.; Abiri, R.; Motamedi, H.; Moradi, J.; Rostamian, M.; Alvandi, A. Global Prevalence of Clostridioides difficile in 17,148 Food Samples from 2009 to 2019: A Systematic Review and Meta-Analysis. J. Health Popul. Nutr. 2023, 42, 36. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.E. Raw Animal Meats as Potential Sources of Clostridium Difficile in Al-Jouf, Saudi Arabia. Food Sci. Anim. Resour. 2021, 41, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Thitaram, S.N.; Frank, J.F.; Lyon, S.A.; SIiragusa, G.R.; Bailey, J.S.; Lombard, J.E.; Haley, C.A.; Wagner, B.A.; Dargatz, D.A.; Fedorka-Cray, P.J. Clostridium Difficile from Healthy Food Animals: Optimized Isolation and Prevalence. J. Food Prot. 2011, 74, 130–133. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration. Foodborne Pathogens. Available online: https://www.fda.gov/food/outbreaks-foodborne-illness/foodborne-pathogens (accessed on 17 December 2023).
- Rouger, A.; Tresse, O.; Zagorec, M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017, 5, 50. [Google Scholar] [CrossRef] [PubMed]
- Hakeem, M.J.; Lu, X. Survival and Control of Campylobacter in Poultry Production Environment. Front. Cell. Infect. Microbiol. 2021, 10, 615049. [Google Scholar] [CrossRef]
- Kornacki, J.L. Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment; Springer: New York, NY, USA, 2010; ISBN 9781441955173. [Google Scholar]
- Behling, R.G.; Eifert, J.; Erickson, M.C.; Gurtler, J.B.; Kornacki, J.L.; Line, E.; Radcliff, R.; Ryser, E.T.; Stawick, B.; Yan, Z. Selected Pathogens of Concern to Industrial Food Processors: Infectious, Toxigenic, Toxico-Infectious, Selected Emerging Pathogenic Bacteria. In Principles of Microbiological Troubleshooting in the Industrial Food Processing Environment; Springer: New York, NY, USA, 2010; pp. 5–61. [Google Scholar] [CrossRef]
- Giacometti, F.; Lucchi, A.; Di Francesco, A.; Delogu, M.; Grilli, E.; Guarniero, I.; Stancampiano, L.; Manfreda, G.; Merialdi, G.; Serraino, A. Arcobacter Butzleri, Arcobacter Cryaerophilus, and Arcobacter Skirrowii Circulation in a Dairy Farm and Sources of Milk Contamination. Appl. Environ. Microbiol. 2015, 81, 5055–5063. [Google Scholar] [CrossRef] [PubMed]
- Swire, E.; Colchester, A. Out of Sight, out of Mind? BSE 30 Years On: Continuing Environmental Risks to Human Health. Land Use Policy 2023, 126, 106521. [Google Scholar] [CrossRef]
- Olsen, S.J.; Ying, M.; Davis, M.F.; Deasy, M.; Holland, B.; Iampietro, L.; Baysinger, C.M.; Sassano, F.; Polk, L.D.; Gormley, B.; et al. Multidrug-Resistant Salmonella Typhimurium Infection from Milk Contaminated after Pasteurization. Emerg. Infect. Dis. 2004, 10, 932–935. [Google Scholar] [CrossRef]
- Fredrick, T.; Ponnaiah, M.; Murhekar, M.V.; Jayaraman, Y.; David, J.K.; Vadivoo, S.; Joshua, V. Cholera Outbreak Linked with Lack of Safe Water Supply Following a Tropical Cyclone in Pondicherry, India, 2012. J. Health Popul. Nutr. 2015, 33, 31–38. [Google Scholar]
- Travert, B.; Rafat, C.; Mariani, P.; Cointe, A.; Dossier, A.; Coppo, P.; Joseph, A. Shiga Toxin-Associated Hemolytic Uremic Syndrome: Specificities of Adult Patients and Implications for Critical Care Management. Toxins 2021, 13, 306. [Google Scholar] [CrossRef]
- Drudy, D.; Mullane, N.R.; Quinn, T.; Wall, P.G.; Fanning, S. Enterobacter Sakazakii: An Emerging Pathogen in Powdered Infant Formula. Clin. Infect. Dis. 2006, 42, 996–1002. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, Z.E.; Hunt, K.; Koolman, L.; Butler, F.; Fanning, S. Cronobacter Species in the Built Food Production Environment: A Review on Persistence, Pathogenicity, Regulation and Detection Methods. Microorganisms 2023, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Boonyong, N.; Kaewmongkol, S.; Khunbutsri, D.; Satchasataporn, K.; Meekhanon, N. Contamination of Streptococcus Suis in Pork and Edible Pig Organs in Central Thailand. Vet. World 2019, 12, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Kerdsin, A.; Segura, M.; Fittipaldi, N.; Gottschalk, M. Sociocultural Factors Influencing Human Streptococcus Suis Disease in Southeast Asia. Foods 2022, 11, 1190. [Google Scholar] [CrossRef] [PubMed]
- Segura, M. Streptococcus Suis: An Emerging Human Threat. J. Infect. Dis. 2009, 199, 4–6. [Google Scholar] [CrossRef]
- Wangsomboonsiri, W.; Luksananun, T.; Saksornchai, S.; Ketwong, K.; Sungkanuparph, S. Streptococcus Suis Infection and Risk Factors for Mortality. J. Infect. 2008, 57, 392–396. [Google Scholar] [CrossRef] [PubMed]
- Osek, J.; Lachtara, B.; Wieczorek, K. Listeria Monocytogenes—How This Pathogen Survives in Food-Production Environments? Front. Microbiol. 2022, 13, 866462. [Google Scholar] [CrossRef]
- Schlech, W.F.; Acheson, D. Foodborne Listeriosis. Clin. Infect. Dis. 2000, 31, 770–775. [Google Scholar] [CrossRef]
- Hoel, S.; Vadstein, O.; Jakobsen, A. The Significance of Mesophilic aeromonas spp. In Minimally Processed Ready-To-Eat Seafood. Microorganisms 2019, 7, 91. [Google Scholar] [CrossRef]
- Praveen, P.K.; Debnath, C.; Shekhar, S.; Dalai, N.; Ganguly, S. Incidence of Aeromonas spp. Infection in Fish and Chicken Meat and Its Related Public Health Hazards: A Review. Vet. World 2016, 9, 6–11. [Google Scholar] [CrossRef]
- Collins, J. Impact of Changing Consumer Lifestyles on the Emergence/Reemergence of Foodborne Pathogens. Emerg. Infect. Dis. 1997, 3, 471–479. [Google Scholar] [CrossRef]
- Abebe, E.; Gugsa, G.; Ahmed, M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J. Trop. Med. 2020, 2020, 4674235. [Google Scholar] [CrossRef]
- Gapud, V. Driving Best Practices in Distribution. Food Safety Magazine. 2006. Available online: https://www.food-safety.com/articles/4621-driving-best-practices-in-distribution (accessed on 15 November 2023).
- Wood, B.; Williams, O.; Nagarajan, V.; Sacks, G. Market Strategies Used by Processed Food Manufacturers to Increase and Consolidate Their Power: A Systematic Review and Document Analysis. Glob. Health 2021, 17, 17. [Google Scholar] [CrossRef]
- Hodson, E.; Niggli, U.; Kitajima, K.; Lal, R.; Sadoff, C. Boost Nature-Positive Production; Springer Ebooks: Cham, Switzerland, 2023; pp. 319–340. [Google Scholar] [CrossRef]
- Fukuda, K. Food Safety in a Globalized World. Bull. World Health Organ. 2015, 93, 212. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.; Waterson, P. Global Food Safety as a Complex Adaptive System: Key Concepts and Future Prospects. Trends Food Sci. Technol. 2019, 91, 409–425. [Google Scholar] [CrossRef]
- Besser, R.E.; Lett, S.M.; Weber, J.T.; Doyle, M.P.; Barrett, T.J.; Wells, J.G.; Griffin, P.M. An Outbreak of Diarrhea and Hemolytic Uremic Syndrome from Escherichia coli O157:H7 in Fresh-Pressed Apple Cider. JAMA 1993, 269, 2217–2220. [Google Scholar] [CrossRef] [PubMed]
- Berkelman, R.L.; Bryan, R.T.; Osterholm, M.T.; LeDuc, J.W.; Hughes, J.M. Infectious Disease Surveillance: A Crumbling Foundation. Science 1994, 264, 368–370. [Google Scholar] [CrossRef] [PubMed]
- Hennessy, T.W.; Hedberg, C.W.; Slutsker, L.; White, K.E.; Besser-Wiek, J.M.; Moen, M.E.; Feldman, J.; Coleman, W.W.; Edmonson, L.M.; MacDonald, K.L.; et al. A National Outbreak of Salmonella Enteritidis Infections from Ice Cream. The Investigation Team. N. Engl. J. Med. 1996, 334, 1281–1286. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Hepatitis A Associated with Consumption of Frozen Strawberries—Michigan, March 1997. MMWR Morb. Mortal. Wkly. Rep. 1997, 46, 288–295. [Google Scholar]
- Burr, R.; Effler, P.; Kanenaka, R.; Nakata, M.; Holland, B.; Angulo, F.J. Emergence of Salmonella Serotype Enteritidis Phage Type 4 in Hawaii Traced to Locally-Produced Eggs. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2005, 9, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.A.; Bergmire-Sweat, D.A.; Schwab, K.J.; Hendricks, K.A.; Reddy, S.; Rowe, S.M.; Fankhauser, R.L.; Monroe, S.S.; Atmar, R.L.; Glass, R.I.; et al. A Foodborne Outbreak of Gastroenteritis Associated with Norwalk-like Viruses: First Molecular Traceback to Deli Sandwiches Contaminated during Preparation. J. Infect. Dis. 2000, 181, 1467–1470. [Google Scholar] [CrossRef] [PubMed]
- Haeghebaert, S.; Sulem, P.; Deroudille, L.; Vanneroy-Adenot, E.; Bagnis, O.; Bouvet, P.; Grimont, F.; Brisabois, A.; Hervy, C.; Espié, E.; et al. Two Outbreaks of Salmonella Enteritidis Phage Type 8 Linked to the Consumption of Cantal Cheese Made with Raw Milk, France, 2001. Eurosurveillance 2003, 8, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Shi, G.-Q.; Tang, G.-P.; Zou, Z.-T.; Yao, G.-H.; Zeng, G. A Foodborne Outbreak of Aeromonas Hydrophila in a College, Xingyi City, Guizhou, China, 2012. West. Pac. Surveill. Response J. WPSAR 2012, 3, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Oh, S.-S.; Oh, K.-H.; Park, J.-H.; Jang, E.J.; Chung, G.T.; Yoo, C.-K.; Bae, G.-R.; Cho, S.-H. An Outbreak of Foodborne Illness Caused by Enteroaggregative Escherichia coli in a High School in South Korea. Jpn. J. Infect. Dis. 2015, 68, 514–519. [Google Scholar] [CrossRef]
- Park, J.-H.; Jung, S.; Shin, J.; Lee, J.S.; Joo, I.S.; Lee, D.-Y. Three Gastroenteritis Outbreaks in South Korea Caused by the Consumption of Kimchi Tainted by Norovirus GI.4. Foodborne Pathog. Dis. 2015, 12, 221–227. [Google Scholar] [CrossRef]
Disease | FBP (Agent) | Possible Factor(s) Contributing to the Emergence |
---|---|---|
Argentine, Bolivian hemorrhagic fever | Virus | Alteration in agriculture related to rodent host |
Bovine spongiform encephalopathy (cattle) | Prions | Modifications in rendering processes |
Influenza (pandemic) | Virus | Possibly pig-duck agriculture, facilitating re-assortment of avian and mammalian influenza viruses |
Rift Valley fever | Virus | Dam building, agriculture, irrigation; possibly change in virulence or pathogenicity of virus |
Cholera | Bacteria (V. cholerae O139) | Introduced from Asia by shipping |
Hemolytic uremic syndrome | Bacteria (E. coli O157:H7) | Mass food processing technology allowed the contamination of meat |
Legionnaires’ disease | Bacteria (Legionella) | Cooling and plumbing systems (organism grew in biofilms that form on water storage tanks and in stagnant areas within plumbing) |
Cryptosporidium, and other waterborne pathogens Salmonellosis from shell eggs | Parasite Bacteria (S. Enteritidis) | Contaminated surface water, faulty water purification Organism adapted, infected laying hen ovaries and contaminated egg before shell formed |
Pathogen/Related Outbreak | Implicated Food | Location | Year | Technology and Industry Factor | Reference |
---|---|---|---|---|---|
E. coli O157:H7 | Raw apple cider | United States (MA) | 1991 | Improper processing and preserving of apple ciders | [91] |
E. coli O157:H7 | Fast-food chain hamburgers | United States (WA, ID, CA, NV) | 1993 | Meat-grinding procedures and undercooking | [92] |
S. Enteritidis | Mass-distributed ice cream | United States (MN) | 1994 | Transportation of ice cream premix in tanker trucks not properly sanitized after holding raw liquid egg. | [93] |
Hepatitis A | Frozen strawberries | United States (MI) | 1997 | Improper food handling or contaminated water | [94] |
S. Enteritidis phage type 4 | Eggs | United States (HI) | 1998 | Improper egg storage, handling, and refrigeration | [95] |
Norwalk-like viruses | deli sandwiches | United States (TX) | 1998 | Improper food handling during sandwich preparation | [96] |
S. Enteritidis phage type 8 | Cantal cheese | France | 2001 | Improper milk processing | [97] |
A. hydrophila | Salad | China | 2012 | Salad components that were washed in contaminated tank water close to sewage, inappropriate food storage | [98] |
Enteroaggregative E. coli | Kippered trotters mixed with vegetables | South Korea | 2013 | Tainted likely by asymptomatic food handlers | [99] |
Norovirus GI.4 | kimchi | South Korea | 2013 | Improper sanitation requirements related to contaminated groundwater | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamaideh, S.; Olaimat, A.N.; Al-Holy, M.A.; Ababneh, A.; Shahbaz, H.M.; Abughoush, M.; Al-Nabulsi, A.; Osaili, T.; Ayyash, M.; Holley, R.A. The Influence of Technological Shifts in the Food Chain on the Emergence of Foodborne Pathogens: An Overview. Appl. Microbiol. 2024, 4, 594-606. https://doi.org/10.3390/applmicrobiol4020041
Hamaideh S, Olaimat AN, Al-Holy MA, Ababneh A, Shahbaz HM, Abughoush M, Al-Nabulsi A, Osaili T, Ayyash M, Holley RA. The Influence of Technological Shifts in the Food Chain on the Emergence of Foodborne Pathogens: An Overview. Applied Microbiology. 2024; 4(2):594-606. https://doi.org/10.3390/applmicrobiol4020041
Chicago/Turabian StyleHamaideh, Saja, Amin N. Olaimat, Murad A. Al-Holy, Ahmad Ababneh, Hafiz Muhammad Shahbaz, Mahmoud Abughoush, Anas Al-Nabulsi, Tareq Osaili, Mutamed Ayyash, and Richard A. Holley. 2024. "The Influence of Technological Shifts in the Food Chain on the Emergence of Foodborne Pathogens: An Overview" Applied Microbiology 4, no. 2: 594-606. https://doi.org/10.3390/applmicrobiol4020041
APA StyleHamaideh, S., Olaimat, A. N., Al-Holy, M. A., Ababneh, A., Shahbaz, H. M., Abughoush, M., Al-Nabulsi, A., Osaili, T., Ayyash, M., & Holley, R. A. (2024). The Influence of Technological Shifts in the Food Chain on the Emergence of Foodborne Pathogens: An Overview. Applied Microbiology, 4(2), 594-606. https://doi.org/10.3390/applmicrobiol4020041