Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Cement
2.1.2. Normal Coarse Aggregate
2.1.3. Recycled Concrete Aggregate (RCA)
2.2. Methods
2.3. Mix Proportion
2.4. Concrete Tests
2.4.1. Workability Test
2.4.2. Compressive Strength Test
- δc = Compressive strength (MPa),
- P = Maximum load (N) and
- A = Cross-sectional area (mm2).
2.4.3. Porosity Test
- P = Porosity,
- Md = Mass of oven-dried sample,
- Mw = Mass of the submerged sample in the water tank for a minimum of 30 min,
- δw = Density of water,
- V = Total volume of sample.
2.4.4. Permeability Test
- Q = Quantity of water discharged cm3,
- K = Coefficient of permeability (cm/s),
- L = Length of specimen (cm),
- t = Total time of discharge (s),
- A = Cross-section area of specimen (cm2),
- h = Difference in head on manometer (cm).
3. Results
3.1. Compaction Factor Test Results
3.2. Compressive Strength Test Results
3.3. Porosity Test Results
3.4. Permeability Test Results
3.5. Relationship between the RCA, Strength, Porosity and Permeability Properties of the Concrete
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Warati, G.K.; Darwish, M.M.; Feyessa, F.F.; Ghebrab, T. Suitability of Scoria as Fine Aggregate and Its Effect on the properties of concrete. Sustainability 2019, 11, 4647. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Rubberized Geopolymer Concrete: Application of Taguchi Method for Various Factors. Int. J. Recent Technol. Eng. 2020, 8, 1167–1174. [Google Scholar] [CrossRef]
- Guntakal, S.N.; Selvan, S. Application of Pervious Concrete for Pavements: A Review. Rasayan J. Chem. 2017, 10, 32–36. [Google Scholar] [CrossRef]
- Saadoon, A.S.; Abbas, A.M.; Almayah, A.A. Revision Study of Green Concrete. Basrah J. Eng. Sci. 2019, 19, 33–38. [Google Scholar] [CrossRef]
- Sharma, A.; Chauhan, A.S.; Jain, A.; Jangid, J.B. Utilization of Waste Material to Make Green Concrete. Int. Res. J. Eng. Technol. 2020, 7, 2666–2669. [Google Scholar]
- Admute, A.; Nagarkar, V.; Padalkar, S.; Bhamre, S.; Tupe, A. Experimental Study on Green Concrete. Int. Res. J. Eng. Technol. 2017, 4, 1182–1186. [Google Scholar]
- Tongo, S.; Aa, O.; Ba, A. Factors Influencing Waste Generation in Buildings Project in South-West, Nigeria. Int. J. Waste Resour. 2020, 9, 371. [Google Scholar] [CrossRef]
- Etefa, G.; Mosisa, A. Waste Rubber Tires: A Partial Replacement for Coarse Aggregate in Concrete Floor Tile Production. Am. J. Civ. Eng. 2020, 8, 57–63. [Google Scholar] [CrossRef]
- Sah, S.K.; Guntakal, S.K.; Selvan, D.S.S. Experimental Study on behavior of Pervious Concrete in Strength and Permeability by Changing Different Parameters. Int. J. Appl. Eng. Res. 2018, 13, 4550–4554. [Google Scholar]
- Al-Thani, S.K.; Park, S. The Case for Sustainable Concrete Waste Management in Qatar. Sustain. Environ. 2019, 5, 1–13. [Google Scholar] [CrossRef]
- Nguyen-Tuan, T. Experimental Study on Mechanical and Hydraulic Properties of Porous Geopolymer Concrete. GEOMATE J. 2020, 19, 66–74. [Google Scholar] [CrossRef]
- Torres, A.; Aguayo, F.; Gaedicke, C.; Nerby, C.; Cavazos, M.; Nerby, C. Developing High Strength Pervious Concrete Mixtures with Local Materials. J. Mater. Sci. Chem. Eng. 2020, 9, 20–34. [Google Scholar] [CrossRef]
- Navaz, A.; Paul, A.; Scholar, P.G. A Review on Influence of Recycled Aggregates in Pervious Concrete. Int. J. Creat. Res. Thoughts 2020, 8, 1–4. [Google Scholar]
- Hase, B.A.; Bhandwalkar, V.; Dere, T.; Patekar, V.; Magar, S. Making Porous Concrete for Rainwater Harvesting and Urban Road. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 411–413. [Google Scholar]
- Bhutta, M.A.R.; Hasanah, N.; Farhayu, N.; Hussin, M.W.; Tahir, M.b.M.; Mirza, J. Properties of porous concrete from waste crushed concrete (recycled aggregate). Constr. Build. Mater. 2013, 47, 1243–1248. [Google Scholar] [CrossRef]
- Dinku, A. Construction Materials Laboratory Manual; Addis Ababa University: Addis Ababa, Ethiopia, 2002. [Google Scholar]
- Shetty, M.S. Fresh Concrete. In Concrete Technology Theory and Practice; S. Chand & Co., Ltd.: New Delhi, India, 2005; pp. 218–297. [Google Scholar]
- ASTM C 39; Standard Test Method for Cylindrical concrete specimens. ASTM: West Conshohocken, PA, USA, 1993; Volume 4, pp. 17–21.
- Herki, B.M.A. Lightweight Concrete Using Local Natural Lightweight Aggregate. J. Crit. Rev. 2020, 7, 490–497. [Google Scholar] [CrossRef]
- ASTM C1754; Standard Test Method for Density and Void Content of Hardened Pervious Concrete. ASTM: West Conshohocken, PA, USA, 2012; pp. 1–3.
- ASTM D2434-68; Standard Test Method for Permeability of Granular Soils (Constant head). ASTM: West Conshohocken, PA, USA, 1994; Volume 4, pp. 192–196.
- Zhu, H.; Wen, C.; Wang, Z.; Li, L. Study on the Permeability of Recycled Aggregate Pervious Concrete with Fibers. Materials 2020, 13, 321. [Google Scholar] [CrossRef]
- ACI522R; Report on Pervious Concrete. ACI Committee 522: Farmington Hills, MI, USA, 2010.
- Nanera, P.V.; Solanki, J.V. Cost Optimization Through Construction Waste Management. Int. Res. J. Eng. Technol. 2020, 7, 1326–1329. [Google Scholar]
- Malesev, M.; Radonjanin, V.; Broceta, G. Properties of recycled aggregate concrete. Orig. Sci. Pap. 2014, 2, 239–249. [Google Scholar] [CrossRef]
- Nassar, R.-U.; Bhatti, S.S.; Shahin, M.; Hossain, M.; Al Slibi, H.A. Lightweight aggregate concrete produced with crushed stone sand as fine aggregate. Cogent Eng. 2020, 7, 1792219. [Google Scholar] [CrossRef]
- Haripriya, S.; Rajesh, B.; Sudarshan, D.S.; Khan, M.I.; Bhaskar, B. Strength Characteristics of Recycled Aggregate Concrete by Ann. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 1210–1214. [Google Scholar] [CrossRef]
- Guo, L.; Guan, Z.; Guo, L.; Shen, W.; Xue, Z.; Chen, P.; Li, M. Effects of Recycled Aggregate Content on Pervious Concrete Performance. J. Renew. Mater. 2020, 8, 1711–1727. [Google Scholar] [CrossRef]
- Ramana, N.V.; Dana, S.S.; Pallavi, K.Y. Performance of Recycled Aggregate in Pervious Concrete. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 233–238. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Al-jabri, H.; Purnell, P. Assessing the role and use of recycled aggregates (R.A.s) in the sustainable management of construction and demolition (C&D) waste via a mini-review and a case study. Waste Manag. Res. 2020, 38, 460–471. [Google Scholar]
- García-González, J.; Rodríguez-Robles, D.; Juan-Valdés, A.; Pozo, J.M.M.-D.; Guerra-Romero, M.I. Porosity and pore size distribution in recycled concrete. Mag. Concr. Res. 2015, 67, 1214–1221. [Google Scholar] [CrossRef]
- Pramod, S.S.; Pradeep, G.K.; Asundi, V.; Ballari, V.; Patil, S.C. Experimental Investigation on Effect of Sand Content in Pervious Concrete. Int. Res. J. Eng. Technol. 2019, 6, 6027–6030. [Google Scholar]
Properties | Test Results | ASTM Standard |
---|---|---|
Specific gravity | 2.9 | Near 2.9 |
Standard Consistency (%) | 31 | 26–33 |
Initial Setting Time (min) | 188.57 | more than 45 min |
Final Setting Time (min) | 316.20 (5 h and 27 min) | not more than 10 h |
Fineness (%) | 1.5 | <5 |
Test Parameters | Test Results | ASTM Code Standards | |
---|---|---|---|
Normal Coarse Aggregate | Recycled Concrete Aggregate | ||
Shape | Angular | Angular | Recommended |
Maximum size(mm) | 20 | 20 | Depending on size |
Fineness modules | 3.82 | 3.95 | ASTM C136-93 |
Unit weight(kg/m3) | 1579.9 | 1537.1 | ASTM C29, 1991 |
Apparent specific Gravity | 2.8763 | 2.6233 | ASTM C127-88 1993 |
Bulk specific Gravity | 2.8117 | 2.5720 | ASTM C127-88 1993 |
Moisture content (%) | 0.980 | 1.617 | ASTM C 566-89, 1989 |
Water absorption (%) | 1.2399 | 1.735 | ASTM C127-88 1993 |
Impact value (%) | 4.805 | 9.659 | ASTM D 5874-95 |
Crushing Value (%) | 12.475 | 18.747 | BS 812: Part 110:1990 |
Los Angeles Abrasion Value (%) | 10.80 | 16.960 | ASTM C 131-89, 1989 |
NCA * (%) + RCA ** (%) | W/C Ratio | Proportion (%) | Weight in kg /m3 (for 1 m3) | Mix Proportion | ||||
---|---|---|---|---|---|---|---|---|
NCA | RCA | Cement | Water | NCA | RCA | |||
100 + 0 | 0.39 | 100 | 0 | 350 | 136.95 | 1579.48 | 0 | 1:4.51:0 |
85 + 15 | 0.40 | 85 | 15 | 350 | 138.76 | 1340 | 236.55 | 1:4.51:0 |
70 + 30 | 0.40 | 70 | 30 | 350 | 138.76 | 1102.14 | 472.35 | 1:4.5:0 |
55 + 45 | 0.40 | 55 | 45 | 350 | 142.38 | 864.57 | 707.38 | 1:4.49:0 |
40 + 60 | 0.41 | 40 | 60 | 350 | 144.17 | 627.75 | 941.63 | 1:4.48:0 |
Designation | Water Cement Ratio | Compacting Factor Value | Remark | |
---|---|---|---|---|
N.C.A. (%) | RCA (%) | |||
100 | 0 | 0.39 | 0.924 | All observed test values fall within permissible range |
85 | 15 | 0.39 | 0.853 | |
70 | 30 | 0.40 | 0.82 | |
55 | 45 | 0.40 | 0.80 | |
40 | 60 | 0.41 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muda, M.M.; Legese, A.M.; Urgessa, G.; Boja, T. Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates. Constr. Mater. 2023, 3, 81-92. https://doi.org/10.3390/constrmater3010006
Muda MM, Legese AM, Urgessa G, Boja T. Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates. Construction Materials. 2023; 3(1):81-92. https://doi.org/10.3390/constrmater3010006
Chicago/Turabian StyleMuda, Muniter Muresa, Alemu Mosisa Legese, Girum Urgessa, and Teshome Boja. 2023. "Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates" Construction Materials 3, no. 1: 81-92. https://doi.org/10.3390/constrmater3010006
APA StyleMuda, M. M., Legese, A. M., Urgessa, G., & Boja, T. (2023). Strength, Porosity and Permeability Properties of Porous Concrete Made from Recycled Concrete Aggregates. Construction Materials, 3(1), 81-92. https://doi.org/10.3390/constrmater3010006