Determining the Maximum Linear Mass of a Suspended Conveyor Belt Using PySR Symbolic Regression
Abstract
1. Introduction
2. Materials and Methods
2.1. Factors Governing the Maximum Mass per Unit Length
2.2. Cross-Sectional Geometry of the Bulk Load on the Belt
- a:l = AB (flat belt (no troughing));
- b:l > AB, AB < 2R, l < 2R d = l; the arc length between the suspensions equals the belt width
- c:l > AB, AB = 2R, l > 2R, d < l;
- d:l > AB, AB = 2R, l > 2R, d = l.
2.3. Software Environment and Reproducibility
3. Results
3.1. Computation of the Maximum Cross-Sectional Area of the Bulk Load
3.2. Determination of the Payload Mass per Unit Length
3.3. Accounting for the Belt Mass
3.4. Practical Application and Worked Example
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
| PySR | Python Symbolic Regression (SymbolicRegression.jl) |
References
- Deka, R.; Borthakur, P.P.; Baruah, E.; Sarmah, P.; Saikia, M. A comprehensive review on mechanical conveyor systems: Evolution, types, and applications. Int. J. Nat. Eng. Sci. 2024, 18, 164–183. [Google Scholar]
- Galkin, V.I.; Sheshko, E.E. Belt conveyors at the current stage of development in mining machinery. Gorn. Zhurnal 2017, 9, 85–90. (In Russian) [Google Scholar] [CrossRef]
- Perten, Y.A. Konveyernyi transport XXI veka. Transp. Ross. Federatsii. Zhurnal O Nauk. Prakt. Ekon. 2005, 1, 42–43. (In Russian) [Google Scholar]
- Hu, K.; Jiang, H.; Zhu, Q.; Qian, W.; Yang, J. Magnetic Levitation Belt Conveyor Control System Based on Multi-Sensor Fusion. Appl. Sci. 2023, 13, 7513. [Google Scholar] [CrossRef]
- Wang, S.; Hu, K.; Li, D. Analysis and experimental research on air gap characteristics of permanent magnet low-resistance belt conveyor. IET Sci. Meas. Technol. 2018, 12, 963–971. [Google Scholar] [CrossRef]
- Cheng, G.; Guo, Y.C.; Hu, K.; Wang, P.Y. Magnetic Belt Conveyor Running Stability Analysis. Appl. Mech. Mater. 2013, 437, 682–685. [Google Scholar] [CrossRef]
- Zakharov, A.Y.; Erofeeva, N.V. Vozmozhnosti snizheniya dinamicheskikh nagruzok na konveyernuyu lentu. Gorn. Oborud. I Elektromekhanika 2018, 6, 3–14. (In Russian) [Google Scholar] [CrossRef]
- Vasil’ev, K.A.; Nikolaev, A.K. Lentochnyi konveyer s podvesnoy lentoy na khodovykh oporakh skolzheniya. J. Min. Inst. 2008, 178, 35–39. (In Russian) [Google Scholar]
- Tang, X.; Hashimoto, S.; Kurita, N.; Kawaguchi, T.; Ogiwara, E.; Hishinuma, N.; Egura, K. Development of a Conveyor Cart with Magnetic Levitation Mechanism Based on Multi Control Strategies. Appl. Sci. 2023, 13, 10846. [Google Scholar] [CrossRef]
- Robinson, P.W.; Orozovic, O.; Meylan, M.H.; Wheeler, C.A.; Ausling, D. Optimization of the cross section of a novel rail running conveyor system. Eng. Optim. 2022, 54, 1544–1562. [Google Scholar] [CrossRef]
- Ordin, A.A.; Nikol’sky, A.M.; Grishchenko, M.A. Optimizing Cross-Section Outline of Bulkload on Belt Conveyor. J. Min. Sci. 2024, 60, 117–123. [Google Scholar] [CrossRef]
- Kuleshov, V.G. Opredelenie radiusa krivizny izgibayushchegosya lentochnogo konveyera s povorotnym ustroystvom. Gorn. Informatsionno-Anal. Byulleten’ 2006, 5, 5. (In Russian) [Google Scholar]
- Wang, S.; Li, D.; Guo, Y. Research on Magnetic Model of Low Resistance Permanent Magnet Pipe Belt Conveyor. 3D Res. 2016, 7, 23. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, K.; Guo, Y.; Wang, S. Optimization on detent force characteristics of the permanent magnet suspension belt conveyor. Adv. Mech. Eng. 2018, 10, 1–13. [Google Scholar] [CrossRef]
- Tolkachev, E.N. Vliyanie nekotorykh konstruktivnykh i rezhimnykh parametrov konveyera s podvesnoy lentoy i raspredelennym privodom na ego tekhnicheskie kharakteristiki. Nauchno-Tekhnicheskii Vestn. Bryanskogo Gos. Univ. 2017, 1, 67–80. (In Russian) [Google Scholar] [CrossRef]
- Babyr’, A.Y.; Babyr’, N.V. Analiz sovremennykh sredstv tsifrovizatsii v logistike. In Sbornik Trudov; Federal’noe gosudarstvennoe avtonomnoe obrazovatel’noe uchrezhdenie vysshego obrazovaniya “Sankt-Peterburgskii politekhnicheskii universitet Petra Velikogo”: Saint Petersburg, Moscow, 2019; pp. 138–143. Available online: https://www.elibrary.ru/item.asp?id=42831388 (accessed on 17 October 2025). (In Russian)
- Nguyen, K.L.; Gabov, V.V.; Zadkov, D.A. Improving efficiency of cleanup and coal flow formation on conveyor by shearer loader with accessorial blade. Eurasian Min. 2019, 1, 37–39. [Google Scholar] [CrossRef]
- Nguyen, K.L.; Gabov, V.V.; Zadkov, D.A. Improvement of drum shearer coal loading performance. Eurasian Min. 2018, 2, 22–25. [Google Scholar] [CrossRef]
- Hrabovský, L.; Fries, J. Transport Performance of a Steeply Situated Belt Conveyor. Energies 2021, 14, 7984. [Google Scholar] [CrossRef]
- Masaki, M.S.; Zhang, L.; Xia, X. A Comparative Study on the Cost-effective Belt Conveyors for Bulk Material Handling. Energy Procedia 2017, 142, 2754–2760. [Google Scholar] [CrossRef]
- Ilic, D.; Wheeler, C. Measurement and simulation of the bulk solid load on a conveyor belt during transportation. Powder Technol. 2017, 307, 190–202. [Google Scholar] [CrossRef]
- Zeng, F.; Yan, C.; Wu, Q.; Wang, T. Dynamic Behaviour of a Conveyor Belt Considering Non-Uniform Bulk Material Distribution for Speed Control. Appl. Sci. 2020, 10, 4436. [Google Scholar] [CrossRef]
- Hrabovský, L. Cross-sectional area of the belt conveyor with a three-idler set. Perners Contacts 2011, 6, 62–67. [Google Scholar]
- Perten, Y.; Pelenko, I.; Erina, E. Ustoichivost’ peremeshcheniya nasypnogo gruza v krutonaklonnykh vertikal’nykh trubchatykh konveyerakh. Nauchnyi Zhurnal NIU ITMO. Seriya Protsessy I Apparaty Pishchevykh Proizv. 2006, 1, 37–42. (In Russian) [Google Scholar]
- Stepanovich, P.O. Opredelenie geometricheskikh parametrov zheloba podvesnoy konveyernoy lenty. Gorn. Informatsionno-Anal. Byulleten 2007, 6, 6. (In Russian) [Google Scholar]
- Gordin, S. Determining-the-Maximum-Linear-Mass-of-a-Conveyor-Belt-Based-on-PySR-Symbolic-Regression. Python Code, 23 September 2025. Available online: https://github.com/sgordin990-create/DETERMINING-THE-MAXIMUM-LINEAR-MASS-OF-A-CONVEYOR-BELT-BASED-ON-PYSR-SYMBOLIC-REGRESSION (accessed on 23 September 2025).
- Tsakalakis, K.; Michalakopoulos, T. Mathematical modeling of the conveyor belt capacity. In Proceedings of the 8th International Conference for Conveying and Handling of Particulate Solids (CHoPS), Tel-Aviv, Israel, 3–7 May 2015. [Google Scholar]
- Sutisna, N.A.; Sudarso, L. Calculation of Belt Conveyor for Transferring Steel Grit in Sandblasting Room. J. Rekayasa Mesin 2021, 12, 521–531. [Google Scholar] [CrossRef]
- Munir, H.A.; Zakaria, A.; Ponniran, A.; Rahman, M.T.A.; Marimuthu, T. Investigation of The Dynamic Deflection of Conveyor Belts Via Simulation Modelling Methods on Idler Factor. J. Phys. Conf. Ser. 2022, 2312, 012027. [Google Scholar] [CrossRef]
- Cranmer, M.; Sanchez-Gonzalez, A.; Battaglia, P.; Xu, R.; Cranmer, K.; Spergel, D.; Ho, S. Discovering Symbolic Models from Deep Learning with Inductive Biases. arXiv 2020, arXiv:2006.11287. [Google Scholar] [CrossRef]
- Cranmer, M. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. arXiv 2023, arXiv:2305.01582. [Google Scholar] [CrossRef]
- Sorour, S.S.; Saleh, C.A.; Shazly, M. Integrating machine learning and symbolic regression for predicting damage initiation in hybrid FRP bolted connections. Sci. Rep. 2025, 15, 18564. [Google Scholar] [CrossRef] [PubMed]
- Tonda, A. Review of PySR: High-performance symbolic regression in Python and Julia. Genet. Program. Evolvable Mach. 2024, 26, 7. [Google Scholar] [CrossRef]
- Cranmer, M.D. Interpretable Machine Learning for the Physical Sciences. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 2023. Available online: https://dataspace.princeton.edu/handle/88435/dsp01sn00b201q (accessed on 1 September 2025).
- Schmidt, M.; Lipson, H. Distilling Free-Form Natural Laws from Experimental Data. Science 2009, 324, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Jeftenić, B.; Ristić, L.; Bebić, M.; Štatkić, S.; Mihailović, I.; Jevtić, D. Optimal utilization of the bulk material transportation system based on speed controlled drives. In Proceedings of the XIX International Conference on Electrical Machines (ICEM 2010), Rome, Italy, 6–8 September 2010; pp. 1–6. [Google Scholar] [CrossRef]
- Bortnowski, P.; Król, R.; Ozdoba, M. Modelling of transverse vibration of conveyor belt in aspect of the trough angle. Sci. Rep. 2023, 13, 19897. [Google Scholar] [CrossRef] [PubMed]
- Beakawi Al-Hashemi, H.M.; Baghabra Al-Amoudi, O.S. A review on the angle of repose of granular materials. Powder Technol. 2018, 330, 397–417. [Google Scholar] [CrossRef]
- Webb, C.; Sikorska, J.; Khan, R.N.; Hodkiewicz, M. Developing and evaluating predictive conveyor belt wear models. Data-Centric Eng. 2020, 1, e3. [Google Scholar] [CrossRef]
- BashRezina. Ves, Massa Konveyernoy Lenty, Kvadratnyi Metr v kg, BashRezina, ves Transporternoy Lenty. Available online: https://www.rezina.info/articlesid103.html (accessed on 29 August 2025). (In Russian).






| l, mm | j, ° | ||||
|---|---|---|---|---|---|
| 800 | 25 | 74,609 | 141,040 | 132,100 | 132,100 |
| 800 | 30 | 92,376 | 152,790 | 139,300 | 139,300 |
| 800 | 35 | 112,030 | 166,680 | 147,260 | 147,260 |
| 800 | 40 | 134,260 | 183,350 | 156,270 | 156,270 |
| 1000 | 25 | 116,580 | 220,370 | 206,400 | 206,400 |
| 1000 | 30 | 144,340 | 238,730 | 217,650 | 217,650 |
| 1000 | 35 | 175,050 | 260,440 | 230,100 | 230,100 |
| 1000 | 40 | 209,770 | 286,480 | 244,170 | 244,170 |
| 1500 | 25 | 262,300 | 495,830 | 464,400 | 464,400 |
| 1500 | 30 | 324,760 | 537,150 | 489,720 | 489,720 |
| 1500 | 35 | 393,870 | 585,980 | 517,730 | 517,730 |
| 1500 | 40 | 471,990 | 644,580 | 549,390 | 549,390 |
| 2000 | 25 | 466,310 | 881,470 | 825,610 | 825,610 |
| 2000 | 30 | 577,350 | 954,930 | 870,610 | 870,610 |
| 2000 | 35 | 700,210 | 1,041,700 | 920,400 | 920,400 |
| 2000 | 40 | 839,100 | 1,145,900 | 976,690 | 976,690 |
| L (mm) | j (rad.) | Numerical Ropt (mm) | Predicted Ropt (mm) | Error |
|---|---|---|---|---|
| 100 | 0.1745 | 35.8069 | 35.814 | ~0.02% |
| 200 | 0.1745 | 71.6188 | 71.628 | ~0.01% |
| 100 | 0.2618 | 38.1954 | 38.198 | ~0.01% |
| 5000 | 0.9599 | 4092.55 | 4099.7 | ~0.17% |
| 10000 | 0.2618 | 3819.72 | 3819.8 | ~0.002% |
| Conveyed Material | Bulk Density | Static Angle of Repose j | Maximum Permissible Conveyor Incline (Uphill) bmax |
|---|---|---|---|
| Coal: | |||
| brown dry | 0.6–0.9 | 35–45 | 16–18 |
| brown wet | 0.8–1.0 | 40–50 | 18 |
| raw | 0.8–1.1 | 30–45 | 18 |
| Gravel: | |||
| wet washed | 1.8–1.9 | 40–50 | 20 |
| unsorted | 1.3–1.5 | 35–40 | 18 |
| sorted dry | 1.2–1.45 | 30–35 | 18 |
| expanded clay | 0.6–0.8 | 30–40 | 13–15 |
| granite | 1.5 | 35–45 | 18 |
| Fabric Type | Cover Grade | 3 Plies | 4 Plies | 5 Plies | 6 Plies | 8 Plies |
|---|---|---|---|---|---|---|
| TK-200-2 | 3-1 | 9.10 | 10.00 | 11.00 | 11.90 | 12.90 |
| TK-200-2 | 5-2 | 14.10 | 15.70 | 16.30 | 17.70 | 18.90 |
| TK-200-2 | 4.5–3.5 | 16.80 | 18.40 | 19.80 | 21.60 | 23.20 |
| TK-200-2 | 6-2 | 15.40 | 17.00 | 18.60 | 20.20 | 21.80 |
| TK-200-2 | 6-3.5 | 18.20 | 19.80 | 21.40 | 23.00 | 24.60 |
| TK-200-2 | 8-2 | 18.20 | 19.80 | 21.40 | 23.00 | 24.60 |
| TK-300 | 4.5-3.5 | 21.00 | 23.00 | 24.80 | 27.00 | 29.60 |
| TK-300 | 6-2 | 19.30 | 21.30 | 23.30 | 25.30 | 27.20 |
| TK-300 | 6-3.5 | 22.80 | 24.80 | 26.80 | 28.80 | 30.70 |
| TK-300 | 8-2 | 22.80 | 24.80 | 26.80 | 28.80 | 30.70 |
| TK-300 | 5-2 | 17.60 | 19.60 | 20.20 | 22.10 | 23.80 |
| TLK-200-2 | 6-2 | 16.10 | 17.90 | 19.80 | 21.60 | 23.90 |
| TLK-300 | 6-3 | 16.40 | 18.40 | 20.40 | 22.30 | 24.60 |
| TLK-400 | 6-4 | 16.10 | 17.90 | 19.80 | 20.90 | 22.70 |
| l, m | , kg/m3 | j, ° | k | mbelt kg/m | mmax, kg/m |
|---|---|---|---|---|---|
| 1.5 | 1100 | 30 | 0.95 | 23.0 | 584.3 |
| 2.0 | 1100 | 30 | 0.95 | 23.0 | 1020.9 |
| 2.0 | 1100 | 40 | 0.95 | 23.0 | 1220.5 |
| 1.5 | 1800 | 30 | 0.95 | 23.0 | 941.5 |
| 2.0 | 1800 | 30 | 0.95 | 23.0 | 1655.9 |
| 2.0 | 1800 | 40 | 0.95 | 23.0 | 1982.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gordin, S.A.; Ermakov, A.N.; Zakharov, A.Y.; Wang, J. Determining the Maximum Linear Mass of a Suspended Conveyor Belt Using PySR Symbolic Regression. Mining 2025, 5, 83. https://doi.org/10.3390/mining5040083
Gordin SA, Ermakov AN, Zakharov AY, Wang J. Determining the Maximum Linear Mass of a Suspended Conveyor Belt Using PySR Symbolic Regression. Mining. 2025; 5(4):83. https://doi.org/10.3390/mining5040083
Chicago/Turabian StyleGordin, Sergey Alexandrovich, Alexander Nikolaevich Ermakov, Alexander Yuryevich Zakharov, and Jianfei Wang. 2025. "Determining the Maximum Linear Mass of a Suspended Conveyor Belt Using PySR Symbolic Regression" Mining 5, no. 4: 83. https://doi.org/10.3390/mining5040083
APA StyleGordin, S. A., Ermakov, A. N., Zakharov, A. Y., & Wang, J. (2025). Determining the Maximum Linear Mass of a Suspended Conveyor Belt Using PySR Symbolic Regression. Mining, 5(4), 83. https://doi.org/10.3390/mining5040083

