Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
3. Results
3.1. SBAS Analysis
3.2. Statistic Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANM | Agencia Nacional de Mineração (Brazilian National Mining Agency) |
A-DInSAR | Advanced- Differential Interferometric Synthetic Aperture Radar |
Bperp | Perpendicular baseline |
DEM | Digital elevation model |
ENVI | Environment for Visualizing Images |
GCP | Ground Control Points |
LoS | Line of sight |
MP | Measured points |
QF | Quadrilátero Ferrífero (Iron Quadrangle) |
SAR | Synthetic Aperture Radar |
SBAS | Small BAseline Subset |
SVD | Singular value decomposition |
TS | Topographic Survey |
References
- ANM. Tailings Dam Classification and Safety Plan. 2019. Available online: http://www.anm.gov.br/assuntos/barragens/pasta-classificacao-de-barragens-demineracao/plano-de-seguranca-de-barragens (accessed on 9 June 2019).
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine Tailings Dams: Characteristics, Failure, Environmental Impacts, and Remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, N.R.; Vick, S.G.; Viotti, C.B.; Watts, B.D. Fundão Tailings Dam Review Panel: Report on the Immediate Causes of the Failure of the Fundão Dam. pp76. 2016. Available online: https://pedlowski.files.wordpress.com/2016/08/fundao-finalreport.pdf (accessed on 2 August 2022).
- Jaroz, A.; Wanke, D. Use of InSAR for Monitoring of Mining Deformations. In Proceedings of the Fringe Workshop 2003, Frascati, Italy, 1–5 December 2003. [Google Scholar]
- Crosetto, M.; Crispa, B.; Biescas, E.; Monserrat, O.; Agudo, M.; Fernandes, P. Land Deformation Monitoring Using SAR Interferometry: State-of-the-art. Photogramm. Fernerkund. Geoinf. 2005, 6, 497–510. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Paradella, W.R.; Ferretti, A.; Mura, J.C.; Colombo, D.; Gama, F.F.; Tamburini, A.; Santos, R.A.; Novalli, F.; Galo, M.; Camargo, P.O.; et al. Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis. Eng. Geol. 2015, 193, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Herrera, G.; Tomás, R.; Vicente, F.; Lopez-Sanchez, J.M.; Mallorquí, J.J.; Mulas, J. Mapping ground movements in open pit mining areas using differential SAR interferometry. Int. J. Rock Mech. Min. Sci. 2010, 47, 1114–1125. [Google Scholar] [CrossRef]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of Conventional and Advanced A-DInSAR to Monitor Very Fast Mining Subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Motagh, M.; Zhand, W. Monitoring active open-pit mine stability in the Rhenish coalfields of Germany using a coherence-based SBAS method. Int. J. Appl. Earth Obs. Geoinf. 2020, 93, 102217. [Google Scholar] [CrossRef]
- Hartwig, M.E.; Paradella, W.R.; Mura, J.C. Detection and monitoring of surface motions in active mine in the Amazon region, using persistent scatterer interferometry with TerraSAR-X satellite Data. Remote Sens. 2013, 5, 4719–4734. [Google Scholar] [CrossRef] [Green Version]
- Pinto, C.A.; Paradella, W.R.; Mura, J.C.; Gama, F.F.; Santos, A.R.; Silva, G.G.; Hartwig, M.E. Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X data. J. Appl. Remote Sens. 2015, 9, 095978-18. [Google Scholar] [CrossRef] [Green Version]
- Mura, J.C.; Paradella, W.R.; Gama, F.F.; Silva, G.G.; Galo, M.; Camargo, P.; Silva, A. Monitoring of Non Linear Ground Movement in an Open Pit Iron Mine Based on an Integration of Advanced DInSAR Techniques Using TerraSAR-X Data. Remote Sens. 2016, 8, 409. [Google Scholar] [CrossRef]
- Silva, G.G.; Mura, J.C.; Paradella, W.R.; Gama, F.F.; Temporin, F.A. Monitoring of ground movement in open pit iron mines of Carajás Province (Amazon region) based on A-DInSAR techniques using TerraSAR-X data. J. Appl. Remote Sens. 2017, 11, 026027. [Google Scholar] [CrossRef] [Green Version]
- Gama, F.F.; Cantone, A.; Mura, J.C.; Pasquali, P.; Paradella, W.R.; Santos, A.R.; Silva, G.G. Monitoring subsidence of open pit iron mines at Carajás Province based on SBAS interferometric technique using TerraSAR-X data. Remote Sens. Appl. Soc. Environ. 2017, 8, 199–211. [Google Scholar] [CrossRef]
- Mura, J.C.; Gama, F.F.; Paradella, W.R.; Negrão, P.; Carneiro, S.; Oliveira, C.G.; Brandão, W.S. Monitoring the vulnerability of the dam and dikes in Germano iron mining after the collapse of the tailings dam of Fundão (Mariana-MG, Brazil) using DInSAR techniques with TerraSAR-X data. Remote Sens. 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Gama, F.F.; Paradella, W.R.; Mura, J.C.; Oliveira, C.G. Advanced DInSAR analysis on dam stability monitoring: A case study in the Germano mining complex (Mariana, Brazil) with SBAS and PSI techniques. Remote Sens. Appl. Soc. Environ. 2019, 16, 100267. [Google Scholar] [CrossRef]
- Gama, F.F.; Mura, J.C.; Paradella, W.R.; Oliveira, C.G. Deformations Prior to the Brumadinho Dam Collapse Revealed by Sentinel-1 InSAR Data Using SBAS and PSI Techniques. Remote Sens. 2020, 12, 3664. [Google Scholar] [CrossRef]
- Mura, J.C.; Gama, F.F.; Paradella, W.R.; Oliveira, C.G.; Rodrigues, T.G. Ground displacements revealed by A-DInSAR analysis in the Germano iron mining complex before and after the Fundão Dam collapse using Sentinel-1 data. J. Appl. Remote Sens. 2021, 15, 036513-19. [Google Scholar] [CrossRef]
- Krishnakumar, V.; Qiu, Z.; Monserrat, O.; Barra, A.; López-Vinielles, J.; Reyes-Carmona, C.; Gao, Q.; Cuevas-González, M.; Palamà, R.; Crippa, B.; et al. Sentinel-1 A-DInSAR Approaches to Map and Monitor Ground Displacements. Remote Sens. 2021, 13, 1120. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Li, X. Investigation on mining subsidence over Appin–West Cliff Colliery using time-series SAR interferometry. Int. J. Remote Sens. 2017, 39, 1528–1547. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Monitoring mining induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur. J. Remote Sens. 2021, 54, 18–30. [Google Scholar] [CrossRef]
- Colesanti, C.; Mouelic, S.L.; Bennani, M.; Raucoules, D.; Carnec, C.; Ferretti, A. Detection of mining related ground instabilities using the Permanent Scatterers technique: A case study in the east of France. Int. J. Remote Sens. 2005, 26, 201–207. [Google Scholar] [CrossRef]
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Guéguen, Y.; Deffontaines, B.; Fruneau, B.; Al Heib, M.; Michele, M.; Raucoules, D.; Guise, Y.; Planchenault, J. Monitoring residual mining subsidence of Nord/Pas-de-Calais coal basin from differential and Persistent Scatterer Interferometry (Northern France). J. Appl. Geophys. 2009, 69, 24–34. [Google Scholar] [CrossRef]
- Ng, A.-H.M.; Ge, L.; Yan, Y.; Li, X.; Chang, H.-C.; Zhang, K.; Rizos, C. Mapping accumulated mine subsidence using small stack of SAR differential interferograms in the Southern coalfield of New South Wales, Australia. Eng. Geol. 2010, 115, 1–15. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Zhang, H.; Wang, C.; Fu, Q. Subsidence monitoring in coal area using time-series InSAR combining persistent scatterers and distributed scatterers. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 49–55. [Google Scholar] [CrossRef]
- Wegmüller, U.; Walter, D.; Spreckels, V.; Werner, C.L. Nonuniform ground motion monitoring with TerraSAR-X persitent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2010, 48, 895–904. [Google Scholar] [CrossRef]
- Raucoles, D.; Maisons, C.; Carnec, C.; Le Mouelic, S.; King, C.; Hosford, S. Monitoring of slow ground deformation by ERS radar interferometry on Vauvert salt mine (France). Remote Sens. Environ. 2003, 88, 468–478. [Google Scholar] [CrossRef]
- Jung, H.C.; Kim, S.-W.; Jung, H.-S.; Min, K.D.; Won, J.-S. Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng. Geol. 2007, 92, 1–13. [Google Scholar] [CrossRef]
- Agurto-Detzel, H.; Bianchi, M.; Assumpção, M.; Schimmel, M.; Collaço, B.; Ciardelli, C.; Barbosa, J.R.; Calhau, J. The tailings dam failure of 5 November 2015 in SE Brazil and its preceding seismic sequence. Geophys. Res. Lett. 2016, 43, 4929–4936. [Google Scholar] [CrossRef] [Green Version]
- Escobar, H. Mud tsunami wreaks ecological havoc in Brazil. Science 2015, 350, 1138–1139. [Google Scholar] [CrossRef]
- Garcia, L.C.; Ribeiro, D.B.; Roque, F.O.; Ochoa-Quintero, J.M.; Laurance, W.F. Brazil’s worst mining disaster: Corporations must be compelled to pay the actual environmental costs. Ecol Appl. 2016, 27, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuervas-Gonzales, M.; Crippa, B. Deformation Monitoring using Sentinel-1 SAR Data. In Proceedings of the 2nd International Electronic Conference on Remote Sensing (SCIforum), Basel, Switzerland, 22 March–5 April 2018; Volume 2. [Google Scholar]
- Strozzi, T.; Antonova, S.; Günther, F.; Mätzler, E.; Gonçalo Vieira, G.; Wegmüller, U.; Westermann, S.; Bartsch, A. Sentinel-1 SAR Interferometry for Surface Deformation Monitoring in Low-Land Permafrost Areas. Remote Sens. 2018, 10, 1360. [Google Scholar] [CrossRef] [Green Version]
- Intrieri, E.; Raspini, F.; Fumagalli, A.F.; Lu, P.; Conte, D.C.; Farina, P.; Allievi, J.; Ferretti, A.; Casagli, N. The Maoxian landslide as seen from space: Detecting precursors of failure with Sentinel-1 data. Landslides 2018, 15, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Béjar-Pizarro, M.; Notti, D.; Mateos, R.M.; Ezquerro, P.; Centolanza, G.; Herrera, G.; Bru, G.; Sanabria, M.; Solari, L.; Javier Duro, J.; et al. Mapping Vulnerable Urban Areas Affected by Slow-Moving Landslides Using Sentinel-1 InSAR Data. Remote Sens. 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Fusco, A.; Manunta, M.; Manzo, M.; Onorato, G.; Zeni, G.; et al. Continental Scale SBAS-DInSAR Processing for the Generation of Sentinel-1 Deformation Time Series within a Cloud Computing Environment: Achieved Results and Lessons Learned. In Proceedings of the EGU General Assembly 2020, Online, 4–8 May 2020. [Google Scholar] [CrossRef]
- Almeida, F.F.M.A. O Craton do São Francisco. Rev. Bras. Geoc. 1977, 7, 349–364. [Google Scholar]
- Dorr, J.V.N., II. Physiographic, Stratigraphic and Structural Development of the Quadrilátero Ferrífero; Geological Survey Professional Paper; United States Government Publishing Office: Washington, DC, USA, 1969.
- Castilho, B.M. Análise dos Gatilhos de Liquefação Dinâmica e Modelagem Numérica da Barragem do Germano. Master’s Thesis, Geotechnical Engineering, Federal University of Ouro Preto, Ouro Preto, Brazil, 2017. [Google Scholar]
- SARscape Technical Description. 2012. Available online: http://www.sarmap.ch/pdf/SARscapeTechnical.pdf (accessed on 5 July 2020).
- Ostrowski, J.A.; Cheng, P. DEM Extraction from Stereo SAR Satellite Imagery. In Proceedings of the IGARSS’2000: Proceedings of the International Geoscience and Remote Sensing Symposium, Honolulu, Hawaii, 25–28 July 2000; IEEE: New York, NY, USA, 2000. [Google Scholar]
- Ferretti, A. Satellite InSAR Data: Reservoir from Space; EAGE Publications: Bunnik, The Netherlands, 2014. [Google Scholar]
- Yu, L.; Yang, T.; Zhao, Q.; Liu, M.; Pepe, A. The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis. Remote Sens. 2017, 9, 1194. [Google Scholar] [CrossRef] [Green Version]
- Bayramov, E.; Buchroithner, M.; Kada, M.; Zhuniskenov, Y. Quantitative Assessment of Vertical and Horizontal Deformations Derived by 3D and 2D Decompositions of InSAR Line-of-Sight Measurements to Supplement Industry Surveillance Programs in the Tengiz Oilfield (Kazakhstan). Remote Sens. 2021, 13, 2579. [Google Scholar] [CrossRef]
- Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X.; Singleton, A. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef] [Green Version]
- Ng, A.; Ge, L.; Zhang, K.; Li, X. Estimating horizontal and vertical movements due to underground mining using ALOS PALSAR. Eng. Geol. 2012, 143, 18–27. [Google Scholar] [CrossRef]
- Manzoni, M.; Molinari, M.E.; Monti-Guarnieri, A. Multitemporal InSAR Coherence Analysis and Methods for Sand Mitigation. Remote Sens. 2021, 13, 1362. [Google Scholar] [CrossRef]
- Boccardo, P.; Gentile, V.; Giulio-Tonolo, F.; Grandoni, D.; Vassileva, M. Multitemporal SAR Coherence Analysis: Lava Flow Monitoring Case Study. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
Pair | Reference * | Secondary * | Bperp (m) | Pair | Reference * | Secondary * | Bperp (m) |
---|---|---|---|---|---|---|---|
1 | 20,160,725 | 20,160,208 | 77.19 | 19 | 20,160,725 | 20,161,011 | 86.51 |
2 | 20,160,725 | 20,160,220 | 109.29 | 20 | 20,160,725 | 20,161,023 | 156.47 |
3 | 20,160,725 | 20,160,303 | 150.44 | 21 | 20,160,725 | 20,161,104 | 126.05 |
4 | 20,160,725 | 20,160,327 | 152.91 | 22 | 20,160,725 | 20,161,116 | 146.96 |
5 | 20,160,725 | 20,160,408 | 155.02 | 23 | 20,160,725 | 20,161,128 | 58.46 |
6 | 20,160,725 | 20,160,420 | 88.95 | 24 | 20,160,725 | 20,161,210 | 53.81 |
7 | 20,160,725 | 20,160,502 | 122.83 | 25 | 20,160,725 | 20,161,222 | 110.06 |
8 | 20,160,725 | 20,160,514 | 156.84 | 26 | 20,160,725 | 20,170,103 | 143.79 |
9 | 20,160,725 | 20,160,526 | 85.11 | 27 | 20,160,725 | 20,170,115 | 135.87 |
10 | 20,160,725 | 20,160,607 | 93.29 | 28 | 20,160,725 | 20,170,127 | 132.80 |
11 | 20,160,725 | 20,160,701 | 153.12 | 29 | 20,160,725 | 20,170,208 | 91.44 |
12 | 20,160,725 | 20,160,713 | 86.20 | 30 | 20,160,725 | 20,170,220 | 54.12 |
13 | 20,160,725 | 20,160,806 | 112.95 | 31 | 20,160,725 | 20,170,304 | 127.22 |
14 | 20,160,725 | 20,160,818 | 132.12 | 32 | 20,160,725 | 20,170,316 | 57.73 |
15 | 20,160,725 | 20,160,830 | 97.26 | 33 | 20,160,725 | 20,170,328 | 136.14 |
16 | 20,160,725 | 20,160,911 | 36.88 | 34 | 20,160,725 | 20,170,409 | 95.16 |
17 | 20,160,725 | 20,160,923 | 141.71 | 35 | 20,160,725 | 20,170,503 | 143.40 |
18 | 20,160,725 | 20,160,929 | 171.88 | 36 | 20,160,725 | 20,170,515 | 177.83 |
Pair | Reference * | Secondary | Bperp (m) | Pair | Reference * | Secondary | Bperp (m) |
---|---|---|---|---|---|---|---|
1 | 20,161,223 | 20,160,208 | 206.97 | 19 | 20,161,223 | 20,161,018 | 25.95 |
2 | 20,161,223 | 20,160,219 | −90.453 | 20 | 20,161,223 | 20,161,029 | −136.30 |
3 | 20,161,223 | 20,160,301 | −270.61 | 21 | 20,161,223 | 20,161,120 | −36.22 |
4 | 20,161,223 | 20,160,312 | −80.17 | 22 | 20,161,223 | 20,161,201 | −59.65 |
5 | 20,161,223 | 20,160,323 | −352.08 | 23 | 20,161,223 | 20,161,212 | 36.05 |
6 | 20,161,223 | 20,160,403 | −206.97 | 24 | 20,161,223 | 20,161,223 | −218.95 |
7 | 20,161,223 | 20,160,414 | −225.40 | 25 | 20,161,223 | 20,170,103 | −108.69 |
8 | 20,161,223 | 20,160,517 | −331.95 | 26 | 20,161,223 | 20,170,114 | 29.08 |
9 | 20,161,223 | 20,160,528 | −349.37 | 27 | 20,161,223 | 20,170,125 | −297.55 |
10 | 20,161,223 | 20,160,608 | −54.813 | 28 | 20,161,223 | 20,170,216 | 340.65 |
11 | 20,161,223 | 20,160,619 | −261.25 | 29 | 20,161,223 | 20,170,227 | 134.90 |
12 | 20,161,223 | 20,160,630 | −329.68 | 30 | 20,161,223 | 20,170,310 | 207.28 |
13 | 20,161,223 | 20,160,711 | −158.70 | 31 | 20,161,223 | 20,170,321 | 250.29 |
14 | 20,161,223 | 20,160,722 | −175.93 | 32 | 20,161,223 | 20,170,401 | 178.15 |
15 | 20,161,223 | 20,160,813 | −57.70 | 33 | 20,161,223 | 20,170,412 | 80.78 |
16 | 20,161,223 | 20,160,904 | −87.70 | 34 | 20,161,223 | 20,170,423 | 16.22 |
17 | 20,161,223 | 20,160,915 | −41.05 | 35 | 20,161,223 | 20,170,504 | −25.74 |
18 | 20,161,223 | 20,160,926 | −55.45 | 36 | 20,161,223 | 20,170,515 | 115.67 |
SL-2 | SL-7 | ST1 | ST11 | ST12 | ST13 | 24ZI402 | 24ZI408 | Mean | SD | |
---|---|---|---|---|---|---|---|---|---|---|
TS (vertical) * | −0.650 | 0.377 | 0.031 | 0.103 | −0.197 | −0.083 | 4.221 | −0.536 | 0.408 | 0.959 |
Vertical decomp * | −1.36 | −0.179 | 0.124 | 0.028 | −0.197 | −0.011 | 4.717 | −0.176 | 0.368 | 1.005 |
Vertical decomp- TS * | −0.712 | −0.556 | 0.093 | −0.075 | 0.000 | 0.072 | 0.496 | 0.360 | −0.040 | 0.047 |
TSX- Proj * | −1.309 | −0.561 | −0.257 | −1.608 | −1.347 | −0.713 | 1.832 | 1.014 | −0.369 | 1.498 |
TSX- Proj-TS * | −0.659 | −0.938 | −0.288 | −1.711 | −1.150 | −0.630 | −2.389 | 1.550 | −0.777 | 0.539 |
S1- Proj * | −1.075 | −0.522 | −0.217 | −0.415 | −0.415 | −0.189 | 5.755 | 5.721 | 1.080 | 0.746 |
S1- Proj-TS * | −0.425 | −0.899 | −0.248 | −0.518 | −0.218 | −0.106 | 1.534 | 6.257 | 0.672 | −0.213 |
SL-2 | SL-7 | ST1 | ST11 | ST12 | ST13 | 24ZI402 | 24ZI408 | Mean | SD | |
---|---|---|---|---|---|---|---|---|---|---|
TS (horizontal) * | 4.044 | 0.407 | −0.109 | 1.897 | 0.613 | 0.153 | −1.704 | −6.079 | −0.097 | 1.833 |
Horizontal decomp * | 4.534 | 0.999 | 0.474 | 2.297 | 1.558 | 1.531 | −1.380 | −5.135 | 0.610 | 1.455 |
Horizontal decomp- TS * | −0.490 | −0.592 | −0.583 | −0.400 | −0.945 | −1.378 | −0.324 | −0.944 | −0.707 | −0.377 |
TSX- Proj * | 0.926 | 0.299 | 0.153 | 1.136 | 0.951 | 0.504 | −2.066 | −0.719 | 0.148 | 1.222 |
TSX- Proj-TS * | 3.118 | 0.108 | −0.262 | 0.761 | −0.338 | −0.351 | 0.362 | −5.360 | −0.245 | −0.611 |
S1- Proj * | 4.292 | −1.861 | 1.191 | 0.430 | 0.365 | 0.053 | −5.044 | −5.721 | −0.787 | 0.908 |
S1- Proj-TS * | −0.248 | 2.268 | −1.300 | 1.467 | 0.248 | 0.100 | 3.340 | −0.358 | 0.690 | −0.924 |
Vertical Decomposition | Horizontal Decomposition | ||||||
---|---|---|---|---|---|---|---|
Prism Id | N (Cases) | T (W Test) | p-Value | μ1 = μ2 | T (W Test) | p-Value | μ1 = μ2 |
SL-2 | 18 | 44 | 0.071 | Ok | 85 | 0.982 | Ok |
SL-7 | 18 | 41 | 0.053 | Ok | 42 | 0.058 | Ok |
ST1 | 18 | 75.5 | 0.663 | Ok | 44 | 0.071 | Ok |
ST11 | 18 | 81 | 0.844 | Ok | 43 | 0.064 | Ok |
ST12 | 18 | 77 | 0.711 | Ok | 41 | 0.053 | Ok |
ST13 | 18 | 74 | 0.615 | Ok | 47 | 0.093 | Ok |
24ZI402 | 27 | 165 | 0.564 | Ok | 176 | 0.755 | Ok |
24ZI408 | 27 | 169 | 0.630 | Ok | 114 | 0.072 | Ok |
Vertical Direction | Horizontal Direction | ||||||
---|---|---|---|---|---|---|---|
Prism Id | N (Cases) | T (W Test) | p-Value | μ1 = μ2 | T (W Test) | p-Value | μ1 = μ2 |
SL-2 | 9 | 12 | 0.213 | Ok | 1 | 0.011. | Not Ok |
SL-7 | 9 | 5 | 0.038 | Not Ok | 21 | 0.859 | Ok |
ST1 | 9 | 7 | 0.066 | Ok | 12 | 0.213 | Ok |
ST11 | 9 | 1 | 0.011 | Not Ok | 10 | 0.138 | Ok |
ST12 | 9 | 2 | 0.015 | Not Ok | 19 | 0.678 | Ok |
ST13 | 9 | 5 | 0.038 | Not Ok | 15 | 0.374 | Ok |
24ZI402 | 14 | 34 | 0.245 | Ok | 47 | 0.729 | Ok |
24ZI408 | 14 | 36 | 0.300 | Ok | 10 | 0.008 | Not Ok |
Vertical Direction | Horizontal Direction | ||||||
---|---|---|---|---|---|---|---|
Prism Id | N (Cases) | T (W Test) | p-Value | μ1 = μ2 | T (W Test) | p-Value | μ1 = μ2 |
SL-2 | 9 | 9 | 0.109 | Ok | 21 | 0.858 | Ok |
SL-7 | 9 | 2 | 0.015 | Not Ok | 2 | 0.015 | Not Ok |
ST1 | 9 | 10 | 0.139 | Ok | 13 | 0.260 | Ok |
ST11 | 9 | 9 | 0.139 | Ok | 8 | 0.085 | Ok |
ST12 | 9 | 14 | 0.314 | Ok | 18 | 0.594 | Ok |
ST13 | 9 | 19 | 0.678 | Ok | 21 | 0.859 | Ok |
24ZI402 | 14 | 23 | 0.064 | Ok | 1 | 0.001 | Not Ok |
24ZI408 | 14 | 1 | 0.001 | Not Ok | 38 | 0.363 | Ok |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gama, F.F.; Cantone, A.; Mura, J.C. Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data. Mining 2022, 2, 725-745. https://doi.org/10.3390/mining2040040
Gama FF, Cantone A, Mura JC. Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data. Mining. 2022; 2(4):725-745. https://doi.org/10.3390/mining2040040
Chicago/Turabian StyleGama, Fábio F., Alessio Cantone, and José C. Mura. 2022. "Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data" Mining 2, no. 4: 725-745. https://doi.org/10.3390/mining2040040
APA StyleGama, F. F., Cantone, A., & Mura, J. C. (2022). Monitoring Horizontal and Vertical Components of SAMARCO Mine Dikes Deformations by DInSAR-SBAS Using TerraSAR-X and Sentinel-1 Data. Mining, 2(4), 725-745. https://doi.org/10.3390/mining2040040