Temporal Changes in SARS-CoV-2 Infection Pattern in Patients Admitted with Hematological Diseases—A Single Center Experience from North India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Outcomes
2.2. Statistical Analysis
3. Results
3.1. Patient Demographics
3.2. COVID-19 Characteristics
3.3. Hematological Disease Characteristics
3.4. Outcomes
3.5. Dose and Duration of Steroids
3.6. Vaccination Cohort
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sahu, K.K.; Kumar, R. Current perspective on pandemic of COVID-19 in the United States. J. Fam. Med. Prim. Care 2020, 9, 1784. [Google Scholar] [CrossRef] [PubMed]
- Fontana, L.; Strasfeld, L. Respiratory virus infections of the stem cell transplant recipient and the hematologic alignancy patient. Infect. Dis. Clin. N. Am. 2019, 33, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Wood, W.A.; Neuberg, D.S.; Thompson, J.C.; Tallman, M.S.; Sekeres, M.A.; Sehn, L.H.; Anderson, K.C.; Goldberg, A.D.; Pennell, N.A.; Niemeyer, C.M.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A report from the ASH Research Collaborative Data Hub. Blood Adv. 2020, 4, 5966–5975. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Weekly Epidemiological Update on COVID-19-1 June 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Rockville, MD, USA, 2019. [Google Scholar]
- Killick, S.B.; Bown, N.; Cavenagh, J.; Dokal, I.; Foukaneli, T.; Hill, A.; Hillmen, P.; Ireland, R.; Kulasekararaj, A.; Mufti, G.; et al. Guidelines for the diagnosis and management of adult aplastic anaemia. Br. J. Haematol. 2016, 172, 187–207, Erratum in: Br. J. Haematol. 2016, 175, 546. [Google Scholar] [CrossRef] [PubMed]
- Cappellini, M.D.; Cohen, A.; Porter, J.; Taher, A.; Viprakasit, V. (Eds.) Guidelines for the Management of Transfusion Dependent Thalassaemia (TDT); Thalassaemia International Federation: Nicosia, Cyprus, 2014; pp. 148–149. [Google Scholar]
- Neunert, C.; Terrell, D.R.; Arnold, D.M.; Buchanan, G.; Cines, D.B.; Cooper, N.; Cuker, A.; Despotovic, J.M.; George, J.N.; Grace, R.F.; et al. American Society of Hematology 2019 guidelines for immune thrombocytopenia. Blood Adv. 2019, 3, 3829–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polyatskin, I.L.; Artemyeva, A.S.; Krivolapov, Y.A. Revised WHO classification of tumors of hematopoietic and lymphoid tissues, 2017: Lymphoid tumors. Arkhiv. Patol. 2019, 81, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Tefferi, A.; Cervantes, F.; Mesa, R.; Passamonti, F.; Verstovsek, S.; Vannucchi, A.M.; Gotlib, J.; Dupriez, B.; Pardanani, A.; Harrison, C.; et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood J. Am. Soc. Hematol. 2013, 122, 1395–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Myeloma Working Group. International Myeloma Working Group (IMWG) Criteria for the Diagnosis of Multiple Myeloma; International Myeloma Foundation: Studio City, CA, USA, 2017. [Google Scholar]
- Younes, A.; Hilden, P.; Coiffier, B.; Hagenbeek, A.; Salles, G.; Wilson, W.; Seymour, J.; Kelly, K.; Gribben, J.; Pfreunschuh, M.; et al. International Working Group consensus response evaluation criteria in lymphoma (RECIL 2017). Ann. Oncol. 2017, 28, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Passamonti, F.; Cattaneo, C.; Arcaini, L.; Bruna, R.; Cavo, M.; Merli, F.; Angelucci, E.; Krampera, M.; Cairoli, R.; Della Porta, M.G.; et al. ITA-HEMA-COV Investigators. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematological malignancies in Italy: A retrospective, multicentre, cohort study. Lancet Haematol. 2020, 7, e737–e745. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ouyang, W.; Chua, M.L.K.; Xie, C. SARS-CoV-2 Transmission in Patients with Cancer at a Tertiary Care Hospital in Wuhan, China. JAMA Oncol. 2020, 6, 1108–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duléry, R.; Lamure, S.; Delord, M.; Di Blasi, R.; Chauchet, A.; Hueso, T.; Rossi, C.; Drenou, B.; Deau Fischer, B.; Soussain, C.; et al. Prolonged in-hospital stay and higher mortality after COVID-19 among patients with non-Hodgkin lymphoma treated with B-cell depleting immunotherapy. Am. J. Hematol. 2021, 96, 934–944. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martín-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Schulze-Koops, H.; Krueger, K.; Vallbracht, I.; Hasseli, R.; Skapenko, A. Increased risk for severe COVID-19 in patients with inflammatory rheumatic diseases treated with rituximab. Ann. Rheum. Dis. 2021, 80, e67. [Google Scholar] [CrossRef] [PubMed]
- Guilpain, P.; Le Bihan, C.; Foulongne, V.; Taourel, P.; Pansu, N.; Maria, A.T.J.; Jung, B.; Larcher, R.; Klouche, K.; Le Moing, V. Rituximab for granulomatosis with polyangiitis in the pandemic of COVID-19: Lessons from a case with severe pneumonia. Ann. Rheum. Dis. 2021, 80, e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avouac, J.; Airó, P.; Carlier, N.; Matucci-Cerinic, M.; Allanore, Y. Severe COVID-19-associated pneumonia in 3 patients with systemic sclerosis treated with rituximab. Ann. Rheum. Dis. 2021, 80, e37. [Google Scholar] [CrossRef] [PubMed]
Characteristics | PRE-DELTA N (%) | DELTA N (%) | Total (p Value) |
---|---|---|---|
Total Patients (N%) | 81 (52.60%) | 73 (47.40) | 154 |
Final Outcome (Alive) | 60 (74.07%) | 49 (67.12%) | 109 (0.344) |
Median Age (Q1, Q3) | 52 (35, 65) | 53 (36, 62) | (0.9150) |
Male | 62 (76.54%) | 44 (60.27%) | 106 (0.030) |
Female | 19 (23.46%) | 29 (39.73%) | |
Severity at Diagnosis
| 40 (49.38%) 1 (1.23%) 40 (49.38%) | 32 (43.84%) 23 (31.51%) 18 (24.66%) | <0.001 |
Smoking Status
| 3 (3.70%) 21 (25.93%) 57 (70.37%) | 0 (0%) 37 (50.68%) 36 (49.32%) | 0.003 |
Delay in Admission
| 77 (95.06%) 4 (4.94%) | 56 (76.71%) 17 (23.29%) | 0.001 |
Active Treat
| 62 (76.54%) 19 (23.46%) | 49 (67.12%) 24 (32.88%) | 0.193 |
Vaccination
| 0 (0%) 81 (100%) | 15 (20.55%) 58 (79.45%) | <0.001 |
Number of doses Received
| 81 (100%) - - | 58 (79.45%) 11 (15.07%) 4 (5.48%) | <0.001 |
Comorbidity
| 47 (58.02%) 34 (41.98%) | 50 (68.49%) 23 (31.51%) | 0.179 |
Valacyclovir Prophylaxis (Yes) | 2 (2.47%) | 11 (15.28%) | 0.005 |
Malignancy Status
| 37 (45.68%) 19 (23.46%) 25 (30.86%) | 35 (47.95%) 24 (32.88%) 14 (19.18%) | 0.189 |
Types of Therapy at the time of COVID-19 diagnosis
| 10 (12.35%) 27 (33.33%) 24 (29.63%) 20 (24.69%) | 5 (6.85%) 35 (47.95%) 18 (24.66%) 15 (20.55%) | 0.276 |
Transplant
| 73 (90.12%) 2 (2.47%) 6 (7.41%) | 62 (84.93%) 8 (10.96%) 3 (4.11%) | 0.078 |
Therapy Received for COVID
| 54 (66.67%) 46 (56.79%) 2 (2.47%) 46 (56.79%) 19 (23.46%) 6 (7.41%) 6 (7.41%) | 49 (67.12%) 60 (82.19%) 5 (6.85%) 34 (46.58%) 35 (47.95%) 4 (5.48%) 4 (5.48%) | 0.952 0.001 0.193 0.205 0.001 0.749 |
Oxygen Support
| 43 (53.09%) 20 (24.69%) 18 (22.22%) | 37 (50.68%) 12 (16.44%) 24 (32.88%) | 0.244 |
Prior no. of lines of therapy
| 64 (79.01%) 17 (20.99%) | 55 (75.34%) 18 (24.66%) | 0.508 |
Diagnosis
| 0 37 (46.68%) 20 (24.69%) 24 (29.63%) | 8 (10.96%) 36 (49.32%) 14 (19.18%) 15 (20.55%) | 0.009 |
Covariate | Univariate Analysis | ||||
---|---|---|---|---|---|
Dead | Alive | Hazard Ratio | 95% CI | p Value | |
Sex (Male) | 32 (30.19%) | 74 (69.81%) | 1.00 | ||
Female | 13 (27.08%) | 35 (72.92%) | 1.218 | (0.633, 2.343) | 0.554 |
Age < 60 years | 35 (26.52%) | 97 (73.48%) | 1.00 | ||
Age ≥ 60 years | 10 (45.45%) | 12 (54.55%) | 1.902 | (1.054, 3.4332) | 0.033 |
Prior no. of lines of therapy
| 29 (24.37%) | 90 (75.63%) | 1.00 | ||
16 (45.71) | 19 (54.29%) | 2.265 | (1.224, 4.192) | 0.009 | |
Smoking Status (No) | 17 (29.31%) | 41 (70.69%) | 1.00 | ||
(Yes) | 1 (33.33%) | 2 (66.67%) | 1.546 | (0.194, 12.306) | 0.680 |
(Unknown) | 27 (29.03%) | 66 (70.97%) | 1.081 | (0.578, 2.024) | 0.578 |
Vaccination
| 0 | 15 (100%) | 1.00 | ||
| 45 (32.37%) | 94 (67.63%) | 2.53 × 1015 | (0, inf) | |
Delay in Admission
| 35 (26.32%) | 98 (73.68%) | 1.00 | ||
| 10 (47.62%) | 11 (52.38%) | 1.485 | (0.709, 3.109) | 0.293 |
Active Treatment (No) | 11 (25.58%) | 32 (74.42%) | 1.00 | ||
| 34 (30.63%) | 77 (69.37%) | 1.165 | (0.588, 2.308) | 0.661 |
Severity (Mild) | 8 (11.11%) | 64 (88.89%) | 1.00 | ||
| 8 (33.33%) | 16 (66.67%) | 2.505 | (0.913, 6.873) | 0.075 |
| 29 (50%) | 29 (50%) | (2.094, 15.368) | <0.001 | |
Comorbidity
| 26 (26.80%) | 71 (73.20%) | 1.00 | ||
| 19 (33.33%) | 38 (66.67%) | 1.455 | (0.803, 2.639) | 0.216 |
Valacyclovir Prophylaxis
| 41 (29.29%) | 99 (70.71) | 1.00 | ||
3 (23.08%) | 10 (76.92%) | 0.712 | (0.216, 2.345) | 0.577 | |
Malignancy Status
| 18 (25%) | 54 (75%) | 1.00 | ||
| 8 (18.60%) | 35 (81.40%) | 0.654 | (0.284, 1.507) | 0.319 |
| 19 (48.72%) | 20 (51.28%) | 2.504 | (1.297, 4.832) | 0.006 |
Therapy Received for COVID | |||||
Steroids (No) | 7 (13.73%) | 44 (86.27%) | 1.00 | ||
| 38 (36.89%) | 65 (63.11%) | 3.227 | (1.437, 7.239) | 0.004 |
Remdesivir (No) | 12 (25%) | 36 (75%) | 1.00 | ||
| 22 (31.13%) | 73 (68.87%) | 1.347 | (0.672, 2.702) | 0.400 |
Favipiravir (No) | 42 (28.57%) | 105 (71.43%) | 1.00 | ||
| 3 (42.86%) | 4 (57.14%) | 1.535 | (0.472, 4.988) | 0.476 |
Anticoagulant (No) | 16 (21.62%) | 58 (78.38%) | 1.00 | ||
| 29 (36.25%) | 51 (63.75%) | 1.939 | (1.048, 3.587) | 0.035 |
Covariate | Univariate Analysis | ||||
Dead | Alive | Hazard Ratio | 95% CI | p value | |
COPLA (COVID Plasma) (No) | 22 (22%) | 78 (78%) | 1.00 | ||
| 23 (42.59%) | 31 (57.41%) | 2.037 | (1.109, 3.742) | 0.022 |
Azithromycin (No) | 39 (27.08%) | 105 (72.92%) | 1.00 | ||
| 6 (60%) | 4 (40%) | 2.472 | (1.029, 5.940) | 0.043 |
Types of Therapy at the time of COVID-19 diagnosis | |||||
| 6 (40%) | 9 (60%) | 1.00 | ||
| 16 (25.81%) | 46 (74.19%) | 0.375 | (0.143, 0.976) | 0.044 |
| 13 (30.95%) | 29 (69.05%) | 0.521 | (0.196, 1.383) | 0.191 |
| 10 (28.57%) | 25 (70.78%) | 0.516 | (0.186, 1.428) | 0.203 |
Transplant
| 42 (31.11%) 2 (20%) 1 (11.11%) | 93 (68.89%) 8 (80%) 8 (88.89%) | 1.00 0.525 0.335 | (0.125, 2.205) (0.0461, 2.444) | 0.380 0.281 |
Oxygen Support
| 7 (8.75%) 6 (18.75%) 32 (76.19%) | 73 (91.25%) 26 (81.25%) 10 (23.81%) | 1 2.310 14.760 | (0.774, 6.896) (6.447, 33.797) | 0.133 <0.001 |
Diagnosis
| 1 (12.50%) 21 (28.77%) 8 (23.53%) 15 (38.46%) | 7 (87.50%) 52 (71.23%) 26 (76.47%) 24 (61.54%) | 1 2.801 2.474 4.344 | (0.370, 21.196) (0.301, 20.295) (0.561, 33.613) | 0.318 0.399 0.159 |
Covariate | Multivariate Analysis | |||
---|---|---|---|---|
N | Hazard Ratio | 95% CI | p Value | |
Sex (Female) | 48 | 1 | ||
Male | 106 | 1.023 | (0.523, 2.003) | 0.945 |
Age < 60 years | 132 | 1 | ||
Age ≥ 60 years | 22 | 1.839 | (0.987, 3.429) | 0.055 |
Prior no. of lines of therapy
| 119 | 1 | ||
35 | 2.085 | (1.106, 3.933) | 0.023 | |
Comorbidity
| 97 | 1 | ||
| 57 | 1.204 | (0.650, 2.227) | 0.554 |
Severity of COVID
| 72 | 1 | ||
| 24 | 0.342 | (0.023, 4.987) | 0.433 |
| 58 | 0.438 | (0.034, 5.607) | 0.526 |
Malignancy status
| 72 | 1 | ||
| 43 | 0.759 | (0.279, 2.066) | 0.590 |
| 39 | 2.718 | (0.896, 8.237) | 0.077 |
Steroids
| 51 | 1 | ||
| 103 | 0.733 | (0.209, 2.563) | 0.627 |
COPLA (COVID Plasma)
| 54 | 1 | ||
| 100 | 0.515 | (0.274, 0.963) | 0.039 |
Remdesivir
| 106 | 1 | ||
| 48 | 0.907 | (0.448, 1.835) | 0.786 |
Types of Therapy at the time of COVID-19 diagnosis | ||||
| 15 | 1 | ||
| 62 | 0.451 | (0.131, 1.552) | 0.207 |
| 42 | 0.224 | (0.059, 0.842) | 0.027 |
| 35 | 0.154 | (0.040, 0.591) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halder, R.; Talaulikar, D.; Singh, R.; Menon, N.; Folbs, B.; Mehta, P.; Kapoor, J.; Khushoo, V.; Verma, M.; Bansal, N.; et al. Temporal Changes in SARS-CoV-2 Infection Pattern in Patients Admitted with Hematological Diseases—A Single Center Experience from North India. Hemato 2023, 4, 100-111. https://doi.org/10.3390/hemato4010010
Halder R, Talaulikar D, Singh R, Menon N, Folbs B, Mehta P, Kapoor J, Khushoo V, Verma M, Bansal N, et al. Temporal Changes in SARS-CoV-2 Infection Pattern in Patients Admitted with Hematological Diseases—A Single Center Experience from North India. Hemato. 2023; 4(1):100-111. https://doi.org/10.3390/hemato4010010
Chicago/Turabian StyleHalder, Rohan, Dipti Talaulikar, Reema Singh, Nidhi Menon, Bhaarat Folbs, Pallavi Mehta, Jyotsna Kapoor, Vishvdeep Khushoo, Megha Verma, Nitin Bansal, and et al. 2023. "Temporal Changes in SARS-CoV-2 Infection Pattern in Patients Admitted with Hematological Diseases—A Single Center Experience from North India" Hemato 4, no. 1: 100-111. https://doi.org/10.3390/hemato4010010