Maize miRNAs Might Regulate Human Genes Involved in Prostate Cancer: An In Silico Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of miRNA Sequences
2.2. Prediction of Maize miRNA Targets in Human mRNA
2.3. GO and KEGG Pathway Enrichment Analysis
2.4. Analysis of Genes Involved in Prostate Cancer
3. Results
3.1. Potential Hybridization of Human mRNAs by Maize miRNAs
3.2. Functional Enrichment Analysis of Genes Potentially Regulated by Maize miRNAs
3.3. Maize miRNAs Potentially Regulate Human Genes Involved in Prostate Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| miRNA | MicroRNA |
| CDS | Coding sequence |
| RISC | RNA-induced silencing complex |
| LDL | Low-density lipoprotein |
| PCa | Prostate cancer |
| GO | Gene ontology |
| MFE | Minimum free energy |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
| UTR | Untranslated region |
| PPI | Protein–protein interaction |
| FDR | False discovery rate |
References
- Anglicheau, D.; Muthukumar, T.; Suthanthiran, M. MicroRNAs: Small RNAs with Big Effects. Transplantation 2010, 90, 105–112. [Google Scholar] [CrossRef]
- Llave, C.; Kasschau, K.D.; Rector, M.A.; Carrington, J.C. Endogenous and Silencing-Associated Small RNAs in Plants. Plant Cell 2002, 14, 1605–1619. [Google Scholar] [CrossRef]
- Graves, P.; Zeng, Y. Biogenesis of Mammalian MicroRNAs: A Global View. Genom. Proteom. Bioinform. 2012, 10, 239–245. [Google Scholar] [CrossRef]
- Kurata, J.S.; Lin, R.-J. MicroRNA-Focused CRISPR-Cas9 Library Screen Reveals Fitness-Associated miRNAs. RNA 2018, 24, 966–981. [Google Scholar] [CrossRef]
- Sánchez-Romo, D.; Hernández-Vásquez, C.I.; Pereyra-Alférez, B.; García-García, J.H. Identification of Potential Target Genes in Homo sapiens by miRNA of Triticum aestivum: A Cross Kingdom Computational Approach. Non-Coding RNA Res. 2022, 7, 89–97. [Google Scholar] [CrossRef]
- Ofer, D.; Linial, M. Inferring microRNA regulation: A proteome perspective. Front. Mol. Biosci. 2022, 9, 916639. [Google Scholar] [CrossRef]
- Lewis, B.P.; Burge, C.B.; Bartel, D.P. Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes Are MicroRNA Targets. Cell 2005, 120, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Neumeier, J.; Meister, G. siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Front. Plant Sci. 2021, 11, 526455. [Google Scholar] [CrossRef] [PubMed]
- Annese, T.; Tamma, R.; De Giorgis, M.; Ribatti, D. MicroRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front. Oncol. 2020, 10, 581007. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.K.; Magoola, M. MicroRNA Nobel Prize: Timely Recognition and High Anticipation of Future Products—A Prospective Analysis. Int. J. Mol. Sci. 2024, 25, 12883. [Google Scholar] [CrossRef]
- Galagali, H.; Kim, J.K. The Multifaceted Roles of MicroRNAs in Differentiation. Curr. Opin. Cell Biol. 2020, 67, 118–140. [Google Scholar] [CrossRef]
- Chi, X.; Wang, Z.; Wang, Y.; Liu, Z.; Wang, H.; Xu, B. Cross-Kingdom Regulation of Plant-Derived miRNAs in Modulating Insect Development. Int. J. Mol. Sci. 2023, 24, 7978. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, D.; Chen, X.; Li, D.; Zhu, L.; Zhang, Y.; Li, J.; Bian, Z.; Liang, X.; Cai, X.; et al. Exogenous Plant MIR168a Specifically Targets Mammalian LDLRAP1: Evidence of Cross-Kingdom Regulation by MicroRNA. Cell Res. 2012, 22, 107–126. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, Y.; Sun, B.; Shao, Y.; Jing, A.; Wang, J.; Xiao, Z. Assessing the Survival of Exogenous Plant microRNA in Mice. Food Sci. Nutr. 2014, 2, 380–388. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, S.; Fu, Z.; Wang, Y.; Wang, N.; Liu, Y.; Zhao, C.; Wu, J.; Hu, Y.; Zhang, J.; et al. Effective Detection and Quantification of Dietetically Absorbed Plant microRNAs in Human Plasma. J. Nutr. Biochem. 2015, 26, 505–512. [Google Scholar] [CrossRef]
- Shi, L.; Guo, C.; Fang, M.; Yang, Y.; Yin, F.; Shen, Y. Cross-Kingdom Regulation of Plant microRNAs: Potential Application in Crop Improvement and Human Disease Therapeutics. Front. Plant Sci. 2024, 15, 1512047. [Google Scholar] [CrossRef]
- Díez-Sainz, E.; Milagro, F.I.; Aranaz, P.; Riezu-Boj, J.I.; Lorente-Cebrián, S. MicroRNAs from Edible Plants Reach the Human Gastrointestinal Tract and May Act as Potential Regulators of Gene Expression. J. Physiol. Biochem. 2024, 80, 655–670. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; He, F.; Ma, L.; Cao, M.; Zhou, Z.; Wei, Z.; Xue, Y.; Sang, X.; Chong, H.; Tian, C.; et al. The Potential Atheroprotective Role of Plant MIR156a as a Repressor of Monocyte Recruitment on Inflamed Human Endothelial Cells. J. Nutr. Biochem. 2018, 57, 197–205. [Google Scholar] [CrossRef]
- Liu, J.; Wang, F.; Song, H.; Weng, Z.; Bao, Y.; Fang, Y.; Tang, X.; Shen, X. Soybean-Derived gma-miR159a Alleviates Colon Tumorigenesis by Suppressing TCF7/MYC in Mice. J. Nutr. Biochem. 2021, 92, 108627. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.R.; Fong, M.Y.; Somlo, G.; Wu, J.; Swiderski, P.; Wu, X.; Wang, S.E. Cross-Kingdom Inhibition of Breast Cancer Growth by Plant miR159. Cell Res. 2016, 26, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Feng, H. Cross-kingdom Regulation by Plant-derived miRNAs in Mammalian Systems. Anim. Models Exp. Med. 2023, 6, 518–525. [Google Scholar] [CrossRef]
- Siyuan, S.; Tong, L.; Liu, R. Corn Phytochemicals and Their Health Benefits. Food Sci. Hum. Wellness 2018, 7, 185–195. [Google Scholar] [CrossRef]
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global Maize Production, Consumption and Trade: Trends and R&D Implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Sekhoacha, M.; Riet, K.; Motloung, P.; Gumenku, L.; Adegoke, A.; Mashele, S. Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules 2022, 27, 5730. [Google Scholar] [CrossRef] [PubMed]
- Oczkowski, M.; Dziendzikowska, K.; Pasternak-Winiarska, A.; Włodarek, D.; Gromadzka-Ostrowska, J. Dietary Factors and Prostate Cancer Development, Progression, and Reduction. Nutrients 2021, 13, 496. [Google Scholar] [CrossRef]
- Giegerich, R.; Rehmsmeier, M.; Steffen, P.; Ho, M. Fast and Effective Prediction of microRNA/Target Duplexes. RNA 2004, 10, 1507–1517. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Liu, J.; Dong, L.; Chen, Q.; Liu, J.; Kong, H.; Zhang, Q.; Qi, X.; Hou, D.; et al. Honeysuckle-Encoded Atypical microRNA2911 Directly Targets Influenza A Viruses. Cell Res. 2015, 25, 39–49. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Liu, Y.; Liu, H.; Wang, H.; Jin, W.; Zhang, Y.; Zhang, C.; Xu, D. Role of Plant microRNA in Cross-Species Regulatory Networks of Humans. BMC Syst. Biol. 2016, 10, 60. [Google Scholar] [CrossRef] [PubMed]
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; et al. Biopython: Freely Available Python Tools for Computational Molecular Biology and Bioinformatics. Bioinformatics 2009, 25, 1422–1423. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server 2016 Update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Nastou, K.; Koutrouli, M.; Kirsch, R.; Mehryary, F.; Hachilif, R.; Hu, D.; Peluso, M.E.; Huang, Q.; Fang, T.; et al. The STRING Database in 2025: Protein Networks with Directionality of Regulation. Nucleic Acids Res. 2025, 53, D730–D737. [Google Scholar] [CrossRef]
- Gu, T.; Xie, M.; Barbazuk, W.B.; Lee, J.-H. Biological Features between miRNAs and Their Targets Are Unveiled from Deep Learning Models. Sci. Rep. 2021, 11, 23825. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Kim, S.-L.; Choi, J.W.; Seo, J.Y.; Choi, D.J.; Park, Y.I. Corn Silk Maysin Induces Apoptotic Cell Death in PC-3 Prostate Cancer Cells via Mitochondria-Dependent Pathway. Life Sci. 2014, 119, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Sotero, M.Y.; Cruz-Hernández, C.D.; Oliart-Ros, R.M.; Chávez-Servia, J.L.; Guzmán-Gerónimo, R.I.; González-Covarrubias, V.; Cruz-Burgos, M.; Rodríguez-Dorantes, M. Anthocyanins of Blue Corn and Tortilla Arrest Cell Cycle and Induce Apoptosis on Breast and Prostate Cancer Cells. Nutr. Cancer 2020, 72, 768–777. [Google Scholar] [CrossRef]
- Magdah, G. Genotoxic and Antitumor Activity of Pollen Grains against Prostate Cancer Cell Line: Pharmaceutical Science-Botany for Medicinal Science. Int. J. Life Sci. Pharma Res. 2022, 11, 36–46. [Google Scholar] [CrossRef]
- Korenchuk, S.; Lehr, J.E.; MClean, L.; Lee, Y.G.; Whitney, S.; Vessella, R.; Lin, D.L.; Pienta, K.J. VCaP, a Cell-Based Model System of Human Prostate Cancer. Vivo 2001, 15, 163–168. [Google Scholar]
- Alimirah, F.; Chen, J.; Basrawala, Z.; Xin, H.; Choubey, D. DU-145 and PC-3 Human Prostate Cancer Cell Lines Express Androgen Receptor: Implications for the Androgen Receptor Functions and Regulation. FEBS Lett. 2006, 580, 2294–2300. [Google Scholar] [CrossRef]
- Liu, C.; Rennie, W.A.; Carmack, C.S.; Kanoria, S.; Cheng, J.; Lu, J.; Ding, Y. Effects of Genetic Variations on microRNA: Target Interactions. Nucleic Acids Res. 2014, 42, 9543–9552. [Google Scholar] [CrossRef]
- Cuperus, J.T.; Fahlgren, N.; Carrington, J.C. Evolution and Functional Diversification of MIRNA Genes. Plant Cell 2011, 23, 431–442. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, P.; Wang, X.; Wang, Y.; Mu, Z.; Li, Q.; Fu, Y.; Xiao, J.; Li, G.; Ma, Y.; et al. Detection of Dietetically Absorbed Maize-Derived microRNAs in Pigs. Sci. Rep. 2017, 7, 645. [Google Scholar] [CrossRef]
- Flint, A.J.; Hu, F.B.; Glynn, R.J.; Jensen, M.K.; Franz, M.; Sampson, L.; Rimm, E.B. Whole Grains and Incident Hypertension in Men. Am. J. Clin. Nutr. 2009, 90, 493–498. [Google Scholar] [CrossRef]
- Hollænder, P.L.; Ross, A.B.; Kristensen, M. Whole-Grain and Blood Lipid Changes in Apparently Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. Am. J. Clin. Nutr. 2015, 102, 556–572. [Google Scholar] [CrossRef] [PubMed]
- McKeown, N.M.; Meigs, J.B.; Liu, S.; Wilson, P.W.; Jacques, P.F. Whole-Grain Intake Is Favorably Associated with Metabolic Risk Factors for Type 2 Diabetes and Cardiovascular Disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 2002, 76, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Weidemüller, P.; Kholmatov, M.; Petsalaki, E.; Zaugg, J.B. Transcription Factors: Bridge between Cell Signaling and Gene Regulation. Proteomics 2021, 21, 2000034. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef] [PubMed]
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van Der Kwast, T.; Bristow, R.G. Prostate Cancer. Nat. Rev. Dis. Primers 2021, 7, 9. [Google Scholar] [CrossRef]
- Masud, N. Symphony in the Crowd: Key Genetic Alterations in Prostate Cancer. Cancer Innov. 2023, 2, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Pomerantz, M.M.; Li, F.; Takeda, D.Y.; Lenci, R.; Chonkar, A.; Chabot, M.; Cejas, P.; Vazquez, F.; Cook, J.; Shivdasani, R.A.; et al. The Androgen Receptor Cistrome Is Extensively Reprogrammed in Human Prostate Tumorigenesis. Nat. Genet. 2015, 47, 1346–1351. [Google Scholar] [CrossRef]
- Tian, L.; Fang, Y.; Xue, J.; Chen, J. Four MicroRNAs Promote Prostate Cell Proliferation with Regulation of PTEN and Its Downstream Signals In Vitro. PLoS ONE 2013, 8, e75885. [Google Scholar] [CrossRef]
- Poliseno, L.; Salmena, L.; Riccardi, L.; Fornari, A.; Song, M.S.; Hobbs, R.M.; Sportoletti, P.; Varmeh, S.; Egia, A.; Fedele, G.; et al. Identification of the miR-106b~25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation. Sci. Signal. 2010, 3, ra29. [Google Scholar] [CrossRef] [PubMed]
- Westaby, D.; Jiménez-Vacas, J.M.; Figueiredo, I.; Rekowski, J.; Pettinger, C.; Gurel, B.; Lundberg, A.; Bogdan, D.; Buroni, L.; Neeb, A.; et al. BCL2 Expression Is Enriched in Advanced Prostate Cancer with Features of Lineage Plasticity. J. Clin. Investig. 2024, 134, e179998. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lin, J.-F.; Tsai, T.-F.; Chou, K.-Y.; Chen, H.-E.; Hwang, T.I.-S. Tumor Suppressor miRNA-204-5p Promotes Apoptosis by Targeting BCL2 in Prostate Cancer Cells. Asian J. Surg. 2017, 40, 396–406. [Google Scholar] [CrossRef]
- Lin, Y.; Fukuchi, J.; Hiipakka, R.A.; Kokontis, J.M.; Xiang, J. Up-Regulation of Bcl-2 Is Required for the Progression of Prostate Cancer Cells from an Androgen-Dependent to an Androgen-Independent Growth Stage. Cell Res. 2007, 17, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wu, K.; Sharma, S.; Xing, F.; Wu, S.-Y.; Tyagi, A.; Deshpande, R.; Singh, R.; Wabitsch, M.; Mo, Y.-Y.; et al. Exosomal miR-1304-3p Promotes Breast Cancer Progression in African Americans by Activating Cancer-Associated Adipocytes. Nat. Commun. 2022, 13, 7734. [Google Scholar] [CrossRef] [PubMed]
- Aktar, A.; Heit, B. Role of the Pioneer Transcription Factor GATA2 in Health and Disease. J. Mol. Med. 2023, 101, 1191–1208. [Google Scholar] [CrossRef]
- Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Men’s Health 2019, 37, 288–295. [Google Scholar] [CrossRef]
- Zhang, Y.; Ming, A.; Wang, J.; Chen, W.; Fang, Z. PROTACs Targeting Androgen Receptor Signaling: Potential Therapeutic Agents for Castration-Resistant Prostate Cancer. Pharmacol. Res. 2024, 205, 107234. [Google Scholar] [CrossRef]
- Mirpuri, K.; Tewari, A.K.; Brown, M.A. Abstract 4759: Dissecting EP300 and CBP Function in Prostate Cancer Models. Cancer Res. 2023, 83, 4759. [Google Scholar] [CrossRef]
- Duda, P.; Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Martelli, A.M.; Cocco, L.; Ratti, S.; Candido, S.; Libra, M.; Montalto, G.; et al. Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells 2020, 9, 1110. [Google Scholar] [CrossRef]
- Wissmiller, K.; Bilekova, S.; Franko, A.; Lutz, S.Z.; Katsburg, M.; Gulde, S.; Pellegata, N.S.; Stenzl, A.; Heni, M.; Berti, L.; et al. Inceptor Correlates with Markers of Prostate Cancer Progression and Modulates Insulin/IGF1 Signaling and Cancer Cell Migration. Mol. Metab. 2023, 71, 101706. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, T.; Chang, F.; Lorimer, D.; Smeekens, S.P.; Sawyers, C.L.; Pollak, M. In Vivo Progression of LAPC-9 and LNCaP Prostate Cancer Models to Androgen Independence Is Associated with Increased Expression of Insulin-like Growth Factor I (IGF-I) and IGF-I Receptor (IGF-IR). Cancer Res. 2001, 61, 6276–6280. [Google Scholar] [PubMed]
- Krueckl, S.L.; Sikes, R.A.; Edlund, N.M.; Bell, R.H.; Hurtado-Coll, A.; Fazli, L.; Gleave, M.E.; Cox, M.E. Increased Insulin-Like Growth Factor I Receptor Expression and Signaling Are Components of Androgen-Independent Progression in a Lineage-Derived Prostate Cancer Progression Model. Cancer Res. 2004, 64, 8620–8629. [Google Scholar] [CrossRef] [PubMed]
- Huo, X.; Liu, S.; Shao, T.; Hua, H.; Kong, Q.; Wang, J.; Luo, T.; Jiang, Y. GSK3 Protein Positively Regulates Type I Insulin-like Growth Factor Receptor through Forkhead Transcription Factors FOXO1/3/4. J. Biol. Chem. 2014, 289, 24759–24770. [Google Scholar] [CrossRef]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-mTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef] [PubMed]
- Domoto, T.; Uehara, M.; Bolidong, D.; Minamoto, T. Glycogen Synthase Kinase 3β in Cancer Biology and Treatment. Cells 2020, 9, 1388. [Google Scholar] [CrossRef]
- Coomans De Brachène, A.; Demoulin, J.-B. FOXO Transcription Factors in Cancer Development and Therapy. Cell. Mol. Life Sci. 2016, 73, 1159–1172. [Google Scholar] [CrossRef]
- Warren, C.F.A.; Wong-Brown, M.W.; Bowden, N.A. BCL-2 Family Isoforms in Apoptosis and Cancer. Cell Death Dis. 2019, 10, 177. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bercz, L.S.; Torok, M.A.; Mace, T.A. Regulation of Cellular Immunity by Activating Transcription Factor 4. Immunol. Lett. 2020, 228, 24–34. [Google Scholar] [CrossRef]
- Huang, J.; Wei, Q.; Liang, B.; Shen, T.; Wu, Y.; Chen, Z.; Yang, J.; Gu, L. Association of CHUK Gene Polymorphism and Ischemic Stroke in the Han Chinese Population. J. Clin. Neurosci. 2021, 88, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Y. Attribution of NF-κB Activity to CHUK/IKKα-Involved Carcinogenesis. Cancers 2021, 13, 1411. [Google Scholar] [CrossRef]
- Qian, Z.; Xuan, B.; Chapa, T.J.; Gualberto, N.; Yu, D. Murine Cytomegalovirus Targets Transcription Factor ATF4 To Exploit the Unfolded-Protein Response. J. Virol. 2012, 86, 6712–6723. [Google Scholar] [CrossRef]
- Pällmann, N.; Livgård, M.; Tesikova, M.; Nenseth, H.Z.; Akkus, E.; Sikkeland, J.; Jin, Y.; Koc, D.; Kuzu, O.F.; Pradhan, M.; et al. Regulation of the Unfolded Protein Response through ATF4 and FAM129A in Prostate Cancer. Oncogene 2019, 38, 6301–6318. [Google Scholar] [CrossRef]
- Sammon, A.M.; Iputo, J.E. Maize Meal Predisposes to Endemic Squamous Cancer of the Oesophagus in Africa: Breakdown of Esterified Linoleic Acid to the Free Form in Stored Meal Leads to Increased Intragastric PGE2; Production and a Low-Acid Reflux. Med. Hypotheses 2006, 67, 1431–1436. [Google Scholar] [CrossRef]
- Franceschi, S.; Bidoli, E.; Baron, A.E.; La Vecchia, C. Maize and Risk of Cancers of the Oral Cavity, Pharynx, and Esophagus in Northeastern Italy. J. Natl. Cancer Inst. 1990, 82, 1407–1411. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Gómez, J.L.; Castorena-Torres, F.; Preciado-Ortiz, R.E.; García-Lara, S. Anti-Cancer Activity of Maize Bioactive Peptides. Front. Chem. 2017, 5, 44. [Google Scholar] [CrossRef]
- Gulati, A.; Singh, J.; Rasane, P.; Kaur, S.; Kaur, J.; Nanda, V. Anti-Cancerous Effect of Corn Silk: A Critical Review on Its Mechanism of Action and Safety Evaluation. 3 Biotech 2023, 13, 246. [Google Scholar] [CrossRef]
- Guo, H.; Guan, H.; Yang, W.; Liu, H.; Hou, H.; Chen, X.; Liu, Z.; Zang, C.; Liu, Y.; Liu, J. Pro-Apoptotic and Anti-Proliferative Effects of Corn Silk Extract on Human Colon Cancer Cell Lines. Oncol. Lett. 2017, 13, 973–978. [Google Scholar] [CrossRef][Green Version]
- Piergentili, R.; Sechi, S. Non-Coding RNAs of Mitochondrial Origin: Roles in Cell Division and Implications in Cancer. Int. J. Mol. Sci. 2024, 25, 7498. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, S.; Fahad, M.; Zhou, W.; Wu, L. MicroRNA Regulation and Environmental Sensing in Grasses. Grass Res. 2024, 4, e012. [Google Scholar] [CrossRef]





| Gene | Hybridization Region | MFE (kcal/mol) |
|---|---|---|
| AR | 5′ UTR | −25.7 |
| BCL2 | 3′ UTR | −32.9 |
| IGF1R | 5′ UTR | −30.9 |
| 5′ UTR | −28.4 | |
| PDGFRB | 3′ UTR | −33.4 |
| GSK3B | 3′ UTR | −38.2 |
| PDPK1 | 3′ UTR | −28.3 |
| TMPRSS2 | 3′ UTR | −37.3 |
| ATF4 | 5′ UTR | −26.8 |
| EP300 | CDS | −25.7 |
| AKT3 | 3′ UTR | −29.3 |
| FOXO1 | 3′ UTR | −30.2 |
| PTEN | 5′ UTR | −29.4 |
| CHUK | 3′ UTR | −30.8 |
| Term Description | Gene Count | False Discovery Rate | Genes |
|---|---|---|---|
| Prostate gland cancer cell | 3 | 6.51 × 10−5 | PTEN, AR, BCL2 |
| Cervical carcinoma cell | 5 | 0.0017 | EP300, GSK3B, CHUK, FOXO1, IGF1R |
| VCaP cell | 2 | 0.0032 | AR, TMPRSS2 |
| DU-145 cell | 2 | 0.0051 | AR, BCL2 |
| Adenocarcinoma cell line | 3 | 0.0225 | AR, BCL2, TMPRSS2 |
| Prostate cancer cell line | 3 | 0.0225 | AR, BCL2, TMPRSS2 |
| Lymphocytic leukemia cell | 4 | 0.0389 | EP300, GSK3B, ATF4, PDPK1 |
| Genes | Target ID | Human miRNA(s) | Hybridization Region | MFE (kcal/mol) for Human miRNAs |
|---|---|---|---|---|
| PTEN | NM_000314.8 | hsa-miR-96-3p | 5′ UTR | −22 |
| hsa-miR-2681-3p | 5′ UTR | −20.1 | ||
| BCL2 | XM_054318967.1 | hsa-miR-1304-3p | 3′ UTR | −38.5 |
| PDPK1 | XM_047434201.1 | hsa-miR-1304-3p | 3′ UTR | −20.7 |
| GSK3B | NM_002093.4 | hsa-miR-5008-3p | 3′ UTR | −26.5 |
| hsa-miR-6737-3p | 3′ UTR | −19.9 | ||
| hsa-miR-6889-3p | 3′ UTR | −17.4 | ||
| hsa-miR-7157-3p | 3′ UTR | −23.4 | ||
| hsa-miR-6529-3p | 3′ UTR | −19.6 | ||
| PDGFRB | NM_002609.4 | hsa-miR-5008-3p | 3′ UTR | −23 |
| hsa-miR-6737-3p | 3′ UTR | −15.5 | ||
| hsa-miR-6889-3p | 3′ UTR | −16 | ||
| hsa-miR-7157-3p | 3′ UTR | −19.3 | ||
| hsa-miR-6529-3p | 3′ UTR | −18.7 |
| Maize miRNA | Also Found in |
|---|---|
| zma-miR159f-5p (GAGCUCCUCUCAUUCCAAUGA) | Not detected in other plant species |
| zma-miR529-5p (AGAAGAGAGAGAGUACAGCCU) | Brachypodium distachyon |
| zma-miR528b-5p zma-miR528a-5p (UGGAAGGGGCAUGCAGAGGAG) | Sorghum bicolor; Brachypodium distachyon; Saccharum sp.; Aegilops tauschii; Vriesea carinata; Oryza sativa |
| zma-miR396c zma-miR396d (UUCCACAGGCUUUCUUGAACUG) | Sorghum bicolor |
| zma-miR167h-3p zma-miR167i-3p (GAUCAUGUUGCAGCUUCAC) | Brachypodium distachyon; Oryza sativa |
| zma-miR528a-3p zma-miR528b-3p (CCUGUGCCUGCCUCUUCCAUU) | Aegilops tauschii; Brachypodium distachyon |
| zma-miR166l-5p (GAAUGGAGGCUGGUCCAAGA) | Not detected in other plant species |
| zma-miR164a-3p (CACGUGUUCUCCUUCUCCAUC) | Not detected in other plant species |
| zma-miR156a-3p (GCUCACUUCUCUCUCUGUCAGU) | Not detected in other plant species |
| zma-miR167g-3p (GGUCAUGCUGUAGUUUCAUC) | Oryza sativa |
| zma-miR166m-5p (GGAAUGUUGGCUGGCUCGAGG) | Medicago truncatula; Oryza sativa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vázquez-Cadena, X.; Faz-Cortez, O.A.; Pereyra-Alférez, B.; Hernández-Vásquez, C.I.; Galán-Wong, L.J.; Elías-Santos, M.; Garcia-Garcia, J.H. Maize miRNAs Might Regulate Human Genes Involved in Prostate Cancer: An In Silico Approach. BioTech 2025, 14, 95. https://doi.org/10.3390/biotech14040095
Vázquez-Cadena X, Faz-Cortez OA, Pereyra-Alférez B, Hernández-Vásquez CI, Galán-Wong LJ, Elías-Santos M, Garcia-Garcia JH. Maize miRNAs Might Regulate Human Genes Involved in Prostate Cancer: An In Silico Approach. BioTech. 2025; 14(4):95. https://doi.org/10.3390/biotech14040095
Chicago/Turabian StyleVázquez-Cadena, Ximena, Oscar Alejandro Faz-Cortez, Benito Pereyra-Alférez, César Ignacio Hernández-Vásquez, Luis Jesús Galán-Wong, Myriam Elías-Santos, and Jorge Hugo Garcia-Garcia. 2025. "Maize miRNAs Might Regulate Human Genes Involved in Prostate Cancer: An In Silico Approach" BioTech 14, no. 4: 95. https://doi.org/10.3390/biotech14040095
APA StyleVázquez-Cadena, X., Faz-Cortez, O. A., Pereyra-Alférez, B., Hernández-Vásquez, C. I., Galán-Wong, L. J., Elías-Santos, M., & Garcia-Garcia, J. H. (2025). Maize miRNAs Might Regulate Human Genes Involved in Prostate Cancer: An In Silico Approach. BioTech, 14(4), 95. https://doi.org/10.3390/biotech14040095

