Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup and Stability of an Anaerobic Digester
2.3. Fabrication of MFC Systems
2.3.1. MFC Operation
2.3.2. Selection of Conductive Materials
2.4. Batch Experiment of MFC
2.5. Scale-Up Studies and Continuous Operation
2.6. Statistical Analysis of Batch and Continuous Models
2.7. Economic Feasibility and Cost Analysis
3. Results
3.1. Establishment of Digester and Its Stability
3.2. Optimization of Various Parameters
3.3. Selection of Conductive Materials and Their Concentrations for the AD Process
3.4. Batch Experiment
3.5. Continue Scale-Up Studies
3.6. Economic Feasibility Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guo, D.; Li, Q.; Liu, P.; Shi, X.; Yu, J. Power Shortage and Firm Performance: Evidence from a Chinese City Power Shortage Index. Energy Econ. 2023, 119, 106593. [Google Scholar] [CrossRef]
- Pramanik, S.K.; Suja, F.B.; Zain, S.M.; Pramanik, B.K. The Anaerobic Digestion Process of Biogas Production from Food Waste: Prospects and Constraints. Bioresour. Technol. Rep. 2019, 8, 100310. [Google Scholar] [CrossRef]
- Kaur, M.; Menon, V.; Kumar, A.; Prasad, B.; Singh, B.; Sharma, S.; Gupta, S. 6—Aerobic and Anaerobic Degradation of Bioplastics. In Bioplastics for Sustainability; Mishra, A.K., Hussain, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 127–141. ISBN 978-0-323-95199-9. [Google Scholar]
- Hosseini, S.E.; Wahid, M.A. Development of Biogas Combustion in Combined Heat and Power Generation. Renew. Sustain. Energy Rev. 2014, 40, 868–875. [Google Scholar] [CrossRef]
- Hameed, Z.; Aslam, M.; Khan, Z.; Maqsood, K.; Atabani, A.E.; Ghauri, M.; Khurram, M.S.; Rehan, M.; Nizami, A.-S. Gasification of Municipal Solid Waste Blends with Biomass for Energy Production and Resources Recovery: Current Status, Hybrid Technologies and Innovative Prospects. Renew. Sustain. Energy Rev. 2021, 136, 110375. [Google Scholar] [CrossRef]
- Hoang, A.T.; Nižetić, S.; Ng, K.H.; Papadopoulos, A.M.; Le, A.T.; Kumar, S.; Hadiyanto, H.; Pham, V.V. Microbial Fuel Cells for Bioelectricity Production from Waste as Sustainable Prospect of Future Energy Sector. Chemosphere 2022, 287, 132285. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.C. Electrical Effects Accompanying the Decomposition of Organic Compounds. Proc. R. Soc. B 1911, 84, 260–276. [Google Scholar] [CrossRef]
- Martinez, R.D.R.; Bermudez, M.E.A. Production of Electrical Energy from Living Plants in Microbial Fuel Cells. Clean Energy 2023, 7, 408–416. [Google Scholar] [CrossRef]
- Schröder, U. Discover the Possibilities: Microbial Bioelectrochemical Systems and the Revival of a 100-Year-Old Discovery. J. Solid State Electrochem. 2011, 15, 1481–1486. [Google Scholar] [CrossRef]
- Gahlot, P.; Ahmed, B.; Tiwari, S.B.; Aryal, N.; Khursheed, A.; Kazmi, A.A.; Tyagi, V.K. Conductive Material Engineered Direct Interspecies Electron Transfer (DIET) in Anaerobic Digestion: Mechanism and Application. Environ. Technol. Innov. 2020, 20, 101056. [Google Scholar] [CrossRef]
- Naina Mohamed, S.; Ajit Hiraman, P.; Muthukumar, K.; Jayabalan, T. Bioelectricity Production from Kitchen Wastewater Using Microbial Fuel Cell with Photosynthetic Algal Cathode. Bioresour. Technol. 2020, 295, 122226. [Google Scholar] [CrossRef]
- Feng, F.; Wu, C.-H.; Li, F.; Wang, X.; Zhu, J.; Zhang, R.; Chen, S.-C. Research on the Integration of Microbial Fuel Cells with Conventional Wastewater Treatment Technology: Advantages of Anaerobic Fermentation. Energy Convers. Manag. X 2024, 23, 100680. [Google Scholar] [CrossRef]
- Pham, T.H.; Rabaey, K.; Aelterman, P.; Clauwaert, P.; De Schamphelaire, L.; Boon, N.; Verstraete, W. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion Technology. Eng. Life Sci. 2006, 6, 285–292. [Google Scholar] [CrossRef]
- Bajracharya, S. 14—Microbial Fuel Cell Coupled with Anaerobic Treatment Processes for Wastewater Treatment. In Integrated Microbial Fuel Cells for Wastewater Treatment; Abbassi, R., Yadav, A.K., Khan, F., Garaniya, V., Eds.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 295–311. ISBN 978-0-12-817493-7. [Google Scholar]
- Sreelekshmy, B.R.; Basheer, R.; Sivaraman, S.; Vasudevan, V.; Elias, L.; Shibli, S.M.A. Sustainable Electric Power Generation from Live Anaerobic Digestion of Sugar Industry Effluents Using Microbial Fuel Cells. J. Mater. Chem. A 2020, 8, 6041–6056. [Google Scholar] [CrossRef]
- Yoshizu, D.; Kouzuma, A.; Watanabe, K. Use of Microbial Fuel Cells for the Treatment of Residue Effluents Discharged from an Anaerobic Digester Treating Food Wastes. Microorganisms 2023, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Abrha, H.; Dai, Y.; Li, J.; Liu, M.; Maryam, B.; Jiao, S.; Zhang, P.; Liu, X. Microbial Electrolysis Cell Assisted Anaerobic Digestion System Boosted the Methane Production from Polylactic Acid by Optimizing the Methanogenesis Pathway. Biochem. Eng. J. 2023, 200, 109105. [Google Scholar] [CrossRef]
- Sondhi, S.; Kaur, P.S.; Kaur, M. Techno-Economic Analysis of Bioethanol Production from Microwave Pretreated Kitchen Waste. SN Appl. Sci. 2020, 2, 1558. [Google Scholar] [CrossRef]
- El Salamony, D.H.; Hassouna, M.S.E.; Zaghloul, T.I.; He, Z.; Abdallah, H.M. Bioenergy Production from Chicken Feather Waste by Anaerobic Digestion and Bioelectrochemical Systems. Microb. Cell Factories 2024, 23, 102. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory fe (iii) and mn (iv) reduction. Adv. Microb. Physiol. 2004, 49, 219–286. [Google Scholar]
- Geelhoed, J.S.; Stams, A.J.M. Electricity-Assisted Biological Hydrogen Production from Acetate by Geobacter Sulfurreducens. Environ. Sci. Technol. 2011, 45, 815–820. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Mofijur, M.; Islam, N.; Parisa, T.A.; Rafa, N.; Bokhari, A.; Klemeš, J.J.; Indra Mahlia, T.M. Insights into the Development of Microbial Fuel Cells for Generating Biohydrogen, Bioelectricity, and Treating Wastewater. Energy 2022, 254, 124163. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Zhang, S.; Su, Z. Study of Operational Performance and Electrical Response on Mediator-Less Microbial Fuel Cells Fed with Carbon- and Protein-Rich Substrates. Biochem. Eng. J. 2009, 45, 185–191. [Google Scholar] [CrossRef]
- Han, S.; Thapa, K.; Liu, W.; Westenberg, D.; Wang, R. Enhancement of Electricity Production of Microbial Fuel Cells by Using DNA Nanostructures as Electron Mediator Carriers. ACS Sustain. Chem. Eng. 2022, 10, 16189–16196. [Google Scholar] [CrossRef]
- Vieira, S.; Barros, M.V.; Sydney, A.C.N.; Piekarski, C.M.; de Francisco, A.C.; Vandenberghe, L.P.d.S.; Sydney, E.B. Sustainability of Sugarcane Lignocellulosic Biomass Pretreatment for the Production of Bioethanol. Bioresour. Technol. 2020, 299, 122635. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Rajesh Banu, J.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent Developments in Pretreatment Technologies on Lignocellulosic Biomass: Effect of Key Parameters, Technological Improvements, and Challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, R.J.; Angelidaki, I. Electricity Production from Xylose Using a Mediator-Less Microbial Fuel Cell. Bioresour. Technol. 2008, 99, 4178–4184. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Guo, H.J.; Zhang, H.R.; Xiong, L.; Li, H.L.; Chen, X.D. A New Concept for Total Components Conversion of Lignocellulosic Biomass: A Promising Direction for Clean and Sustainable Production in Its Bio-Refinery. J. Chem. Technol. Biotechnol. 2019, 94, 2416–2424. [Google Scholar] [CrossRef]
- Mahajan, R.; Nikitina, A.; Litti, Y.; Nozhevnikova, A.; Goel, G. Autochthonous Microbial Community Associated with Pine Needle Forest Litterfall Influences Its Degradation under Natural Environmental Conditions. Environ. Monit. Assess. 2016, 188, 417. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Kushwaha, S.P.S. Refining Logistic Regression Models for Wildlife Habitat Suitability Modeling-A Case Study with Muntjak and Goral in the Central Himalayas, India. Ecol. Model. 2011, 222, 1354–1366. [Google Scholar] [CrossRef]
- Tiwari, A.; Rawat, S.; Adhikari, R.S. Decomposition Pattern in Pinus Longifolia Leaf Litter in Chandak Forest in the Presence of Cow Dung and Urea. Int. J. Curr. Microbiol. Appl. Sci. 2016, 5, 806–812. [Google Scholar] [CrossRef]
- Soong, J.L.; Parton, W.J.; Calderon, F.; Campbell, E.E.; Cotrufo, M.F. A New Conceptual Model on the Fate and Controls of Fresh and Pyrolized Plant Litter Decomposition. Biogeochemistry 2015, 124, 27–44. [Google Scholar] [CrossRef]
- Sharma, D.P. Biomass Distribution in Sub-Tropical Forest of Solan Foret Division (HP). Indian J. Ecol. 2009, 36, 1–5. [Google Scholar]
- Molina, A.J.; Bautista, I.; Lull, C.; del Campo, A.; González-Sanchis, M.; Lidón, A. Effects of Thinning Intensity on Forest Floor and Soil Biochemical Properties in an Aleppo Pine Plantation after 13 Years: Quantity but Also Quality Matters. Forests 2022, 13, 255. [Google Scholar] [CrossRef]
- Chae, H.M.; Choi, S.H.; Lee, S.H.; Cha, S.; Yang, K.C.; Shim, J.K. Effect of Litter Quality on Needle Decomposition for Four Pine Species in Korea. Forests 2019, 10, 371. [Google Scholar] [CrossRef]
- Safi, M.J.; Mishra, I.M.; Prasad, B. Global Degradation Kinetics of Pine Needles in Air. Thermochim. Acta 2004, 412, 155–162. [Google Scholar] [CrossRef]
- Mahajan, R.; Nikitina, A.; Litti, Y.; Kallistova, A.; Nozhevnikova, A.; Goel, G. Evaluating Anaerobic and Aerobic Digestion Strategies for Degradation of Pretreated Pine Needle Litter. Int. J. Environ. Sci. Technol. 2019, 16, 191–200. [Google Scholar] [CrossRef]
- Nabi, M.; Liang, H.; Cheng, L.; Yang, W.; Gao, D. A Comprehensive Review on the Use of Conductive Materials to Improve Anaerobic Digestion: Focusing on Landfill Leachate Treatment. J. Environ. Manag. 2022, 309, 114540. [Google Scholar] [CrossRef]
- Sharma, D.; Mahajan, R.; Goel, G. Insights into Direct Interspecies Electron Transfer Mechanisms for Acceleration of Anaerobic Digestion of Wastes. Int. J. Environ. Sci. Technol. 2019, 16, 2133–2142. [Google Scholar] [CrossRef]
- Madondo, N.I.; Rathilal, S.; Bakare, B.F.; Tetteh, E.K. Application of Magnetite-Nanoparticles and Static Magnetic Field on a Microbial Fuel Cell in Anaerobic Digestion. Chem.—Asian J. 2023, 18, e202300256. [Google Scholar] [CrossRef]
- Wu, X.; Xia, A.; Feng, D.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Intensifying Anaerobic Digestion of 5-Hydroxymethylfurfural via Granular Activated Carbon Supplementation. Int. J. Hydrogen Energy 2024, 52, 71–82. [Google Scholar] [CrossRef]
- Watson, V.J.; Nieto Delgado, C.; Logan, B.E. Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance. Environ. Sci. Technol. 2013, 47, 6704–6710. [Google Scholar] [CrossRef]
- Yellappa, M.; Annie Modestra, J.; Rami Reddy, Y.V.; Venkata Mohan, S. Functionalized Conductive Activated Carbon-Polyaniline Composite Anode for Augmented Energy Recovery in Microbial Fuel Cells; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 320, ISBN 0-09-140271-9. [Google Scholar]
- Dong, J.; Wu, Y.; Wang, C.; Lu, H.; Li, Y. Three-Dimensional Electrodes Enhance Electricity Generation and Nitrogen Removal of Microbial Fuel Cells. Bioprocess Biosyst. Eng. 2020, 43, 2165–2174. [Google Scholar] [CrossRef] [PubMed]
- Ong, V.Z.; Wu, T.Y. An Application of Ultrasonication in Lignocellulosic Biomass Valorisation into Bio-Energy and Bio-Based Products. Renew. Sustain. Energy Rev. 2020, 132, 109924. [Google Scholar] [CrossRef]
- Ahuja, V.; Arora, A.; Chauhan, S.; Thakur, S.; Jeyaseelan, C.; Paul, D. Yeast-Mediated Biomass Valorization for Biofuel Production: A Literature Review. Fermentation 2023, 9, 784. [Google Scholar] [CrossRef]
- Ahuja, V.; Sharma, C.; Paul, D.; Dasgupta, D.; Saratale, G.D.; Banu, J.R.; Yang, Y.; Bhatia, S.K. Unlocking the Power of Synergy: Cosubstrate and Coculture Fermentation for Enhanced Biomethane Production. Biomass Bioenergy 2024, 180, 106996. [Google Scholar] [CrossRef]
- Andlar, M.; Belskaya, H.; Morzak, G.; Ivančić Šantek, M.; Rezić, T.; Petravić Tominac, V.; Šantek, B. Biogas Production Systems and Upgrading Technologies: A Review. Food Technol Biotechnol 2021, 59, 387–412. [Google Scholar] [CrossRef]
- De Farias Silva, C.E.; Gois, G.N.S.B.; Abud, A.K.S.; Amorim, N.C.S.; Girotto, F.; Markou, G.; Carvalho, C.M.; Tonholo, J.; Amorim, E.L. Anaerobic Digestion: Biogas Production from Agro-Industrial Wastewater, Food Waste, and Biomass. In Prospects of Renewable Bioprocessing in Future Energy Systems; Rastegari, A.A., Yadav, A.N., Gupta, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 431–470. ISBN 978-3-030-14463-0. [Google Scholar]
- Uddin, M.M.; Wright, M.M. Anaerobic Digestion Fundamentals, Challenges, and Technological Advances. Phys. Sci. Rev. 2023, 8, 2819–2837. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, J.; Yuan, Y.X.; Dai, Y.M.; Li, D.; Li, Z.D.; Liu, X.F.; Zhang, X.Y.; Yan, Z.Y. Methane Production Characteristics and Microbial Community Dynamics of Mono-Digestion and Co-Digestion Using Corn Stalk and Pig Manure. Int. J. Hydrogen Energy 2017, 42, 4893–4901. [Google Scholar] [CrossRef]
- Dang, Y.; Holmes, D.E.; Zhao, Z.; Woodard, T.L.; Zhang, Y.; Sun, D.; Wang, L.Y.; Nevin, K.P.; Lovley, D.R. Enhancing Anaerobic Digestion of Complex Organic Waste with Carbon-Based Conductive Materials. Bioresour. Technol. 2016, 220, 516–522. [Google Scholar] [CrossRef]
- Romero, R.M.; Valenzuela, E.I.; Cervantes, F.J.; Garcia-Reyes, R.B.; Serrano, D.; Alvarez, L.H. Improved Methane Production from Anaerobic Digestion of Liquid and Raw Fractions of Swine Manure Effluent Using Activated Carbon. J. Water Process Eng. 2020, 38, 101576. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, Y.; Ji, D.; Li, X.; Zhang, J.; Zang, L. Synergetic Promotion of Direct Interspecies Electron Transfer for Syntrophic Metabolism of Propionate and Butyrate with Graphite Felt in Anaerobic Digestion. Bioresour. Technol. 2019, 287, 121373. [Google Scholar] [CrossRef]
- Namal, O.O. Investigation of the Effects of Different Conductive Materials on the Anaerobic Digestion. Int. J. Environ. Sci. Technol. 2020, 17, 473–482. [Google Scholar] [CrossRef]
- Ruan, R.; Cao, J.; Li, C.; Zheng, D.; Luo, J. The Influence of Micro-Oxygen Addition on Desulfurization Performance and Microbial Communities during Waste-Activated Sludge Digestion in a Rusty Scrap Iron-Loaded Anaerobic Digester. Energies 2017, 10, 258. [Google Scholar] [CrossRef]
- Leng, L.; Yang, P.; Singh, S.; Zhuang, H.; Xu, L.; Chen, W.-H.; Dolfing, J.; Li, D.; Zhang, Y.; Zeng, H.; et al. A Review on the Bioenergetics of Anaerobic Microbial Metabolism Close to the Thermodynamic Limits and Its Implications for Digestion Applications. Bioresour. Technol. 2018, 247, 1095–1106. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Takayanagi, K.; Li, Q.; Shofie, M.; Gao, F.; Dong, R.; Li, Y.-Y. Thermodynamically Enhancing Propionic Acid Degradation by Using Sulfate as an External Electron Acceptor in a Thermophilic Anaerobic Membrane Reactor. Water Res. 2016, 106, 320–329. [Google Scholar] [CrossRef]
- Nevin, K.P.; Richter, H.; Covalla, S.F.; Johnson, J.P.; Woodard, T.L.; Orloff, A.L.; Jia, H.; Zhang, M.; Lovley, D.R. Power Output and Columbic Efficiencies from Biofilms of Geobacter Sulfurreducens Comparable to Mixed Community Microbial Fuel Cells. Environ. Microbiol. 2008, 10, 2505–2514. [Google Scholar] [CrossRef]
- Franks, A.E.; Nevin, K.P. Microbial Fuel Cells, a Current Review. Energies 2010, 3, 899–919. [Google Scholar] [CrossRef]
- Lin, R.; Cheng, J.; Zhang, J.; Zhou, J.; Cen, K.; Murphy, J.D. Boosting Biomethane Yield and Production Rate with Graphene: The Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion. Bioresour. Technol. 2017, 239, 345–352. [Google Scholar] [CrossRef]
- Lin, R.; Cheng, J.; Ding, L.; Murphy, J.D. Improved Efficiency of Anaerobic Digestion through Direct Interspecies Electron Transfer at Mesophilic and Thermophilic Temperature Ranges. Chem. Eng. J. 2018, 350, 681–691. [Google Scholar] [CrossRef]
- Strycharz, S.M.; Glaven, R.H.; Coppi, M.V.; Gannon, S.M.; Perpetua, L.A.; Liu, A.; Nevin, K.P.; Lovley, D.R. Gene Expression and Deletion Analysis of Mechanisms for Electron Transfer from Electrodes to Geobacter Sulfurreducens. Bioelectrochemistry 2011, 80, 142–150. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Chen, S.; Quan, X. Enhanced Production of Methane from Waste Activated Sludge by the Combination of High-Solid Anaerobic Digestion and Microbial Electrolysis Cell with Iron-Graphite Electrode. Chem. Eng. J. 2015, 259, 787–794. [Google Scholar] [CrossRef]
- Kardi, S.N.; Ibrahim, N.; Darzi, G.N.; Rashid, N.A.A.; Villaseñor, J. Dye Removal of AR27 with Enhanced Degradation and Power Generation in a Microbial Fuel Cell Using Bioanode of Treated Clinoptilolite-Modified Graphite Felt. Environ. Sci. Pollut. Res. 2017, 24, 19444–19457. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, Y.; Yu, Q.; Zhang, Y. Ferroferric Oxide Triggered Possible Direct Interspecies Electron Transfer between Syntrophomonas and Methanosaeta to Enhance Waste Activated Sludge Anaerobic Digestion. Bioresour. Technol. 2018, 250, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Zhang, Y.; Woodard, T.L.; Nevin, K.P.; Lovley, D.R. Enhancing Syntrophic Metabolism in Up-Flow Anaerobic Sludge Blanket Reactors with Conductive Carbon Materials. Bioresour. Technol. 2015, 191, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Obileke, K.; Makaka, G.; Nwokolo, N.; Meyer, E.L.; Mukumba, P. Economic Analysis of Biogas Production via Biogas Digester Made from Composite Material. ChemEngineering 2022, 6, 67. [Google Scholar] [CrossRef]
- Al-Wahaibi, A.; Osman, A.I.; Al-Muhtaseb, A.H.; Alqaisi, O.; Baawain, M.; Fawzy, S.; Rooney, D.W. Techno-Economic Evaluation of Biogas Production from Food Waste via Anaerobic Digestion. Sci. Rep. 2020, 10, 15719. [Google Scholar] [CrossRef]
Technology | Advantages | Limitations | References |
---|---|---|---|
Anaerobic digestion | Renewable energy production Waste management Carbon neutrality Substrate flexibility By-product utilization | High initial investment Complex operation and maintenance Digestion efficiency and stability Digestate management | [2,3] |
Combined Heat and Power (CHP) | CHP systems are highly efficient Energy savings CHP systems contribute to greenhouse Gas emission reduction Fuel flexibility | High initial investment Complexities in system sizing, control, and operation Maintenance requirements Heat demand matching | [4] |
Gasification | Gasification can utilize a wide range of feedstocks High energy conversion efficiencies Cleaner fuel production Potential for carbon capture and utilization | Complexity and cost Feedstock quality and handling Gas cleanup and tar management Scale and integration challenges | [5] |
Microbial fuel cells | The generation of renewable electricity from a wide range of organic substrates. MFCs can simultaneously treat organic waste while generating electricity. MFCs have relatively low operating costs compared to traditional wastewater treatment technologies. MFCs can facilitate the recovery of valuable resources from organic waste, such as nutrients and metals. | MFCs typically exhibit lower power densities compared to other renewable energy technologies. Slow start-up and response times MFC systems can be complex to design, construct, and maintain, requiring careful attention to electrode materials, microbial inoculation, and system optimization. Limited substrate utilization MFC performance is influenced by environmental factors such as temperature, pH, and salinity, which can impact microbial activity and electrode kinetics | [6] |
Setup | Substrate | Composition |
---|---|---|
Control | Cow dung slurry only (CDS) | 1:1, 1:2, 2:3 |
Test 1 | Pine needle (PN) + CDS | CDS + 1% PN |
Test 2 | PN + CDS + Conducting material | CDS + 1% PN + Conducting material (0–30 mM) |
Setup | Conducting Material | Substrate |
---|---|---|
Control | No conductive material | Cow dung slurry only |
Test 1 | No conductive material | 1% Pine needle + cow dung slurry |
Test 2 | Conductive material | 1% Pine needle + cow dung slurry + Graphite powder 5 mM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, D.; Mahajan, R.; Baghel, V.; Bansal, S.; Ahuja, V.; Goel, G. Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management. BioTech 2024, 13, 35. https://doi.org/10.3390/biotech13030035
Sharma D, Mahajan R, Baghel V, Bansal S, Ahuja V, Goel G. Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management. BioTech. 2024; 13(3):35. https://doi.org/10.3390/biotech13030035
Chicago/Turabian StyleSharma, Deepak, Rishi Mahajan, Vikas Baghel, Saurabh Bansal, Vishal Ahuja, and Gunjan Goel. 2024. "Simultaneous Production of Biogas and Electricity from Anaerobic Digestion of Pine Needles: Sustainable Energy and Waste Management" BioTech 13, no. 3: 35. https://doi.org/10.3390/biotech13030035