Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning
2.2. Characterization
2.2.1. Scanning Electron Microscopy/Energy Dispersive X-ray Spectroscopy
2.2.2. X-ray Diffraction and Fourier Transform Infrared Spectroscopy
2.2.3. Thermal Stimulated Discharge Current
2.2.4. Cytotoxicity
2.2.5. Bioactivity
3. Results and Discussion
3.1. Electrospinning Solution and Parameters
3.2. SEM Analysis
3.3. XRD and FTIR Analysis
3.4. Thermally Stimulated Depolariation Currents Analysis
3.5. Cytotoxicity Analysis
3.6. Bioactivity Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Gonçalves, F. Bone metastases: An overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [CrossRef] [Green Version]
- Schlickewei, C.W.; Kleinertz, H.; Thiesen, D.M.; Mader, K.; Priemel, M.; Frosch, K.-H.; Keller, J. Current and Future Concepts for the Treatment of Impaired Fracture Healing. Int. J. Mol. Sci. 2019, 20, 5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukada, E.; Yasuda, I. On the Piezoelectric Effect of Bone. J. Phys. Soc. Jpn. 1957, 12, 1158–1162. [Google Scholar] [CrossRef]
- Baxter, F.R.; Bowen, C.; Turner, I.G.; Dent, A.C.E. Electrically Active Bioceramics: A Review of Interfacial Responses. Ann. Biomed. Eng. 2010, 38, 2079–2092. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; More, N.; Kalia, K.; Kapusetti, G. Piezoelectric smart biomaterials for bone and cartilage tissue engineering. Inflamm. Regen. 2018, 38, 2. [Google Scholar] [CrossRef] [Green Version]
- Khare, D.; Basu, B.; Dubey, A.K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 2020, 258, 120280. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Clark, C.C.; Brighton, C.T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr. Cartil. 2009, 17, 397–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- More, N.; Kapusetti, G. Piezoelectric material—A promising approach for bone and cartilage regeneration. Med. Hypotheses 2017, 108, 10–16. [Google Scholar] [CrossRef]
- Mishra, S.; Unnikrishnan, L.; Nayak, S.K.; Mohanty, S. Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review. Macromol. Mater. Eng. 2019, 304, 180046. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tian, C.; Deng, Z.D. Energy harvesting from low frequency applications using piezoelectric materials. Appl. Phys. Rev. 2014, 1, 041301. [Google Scholar] [CrossRef]
- Houis, S.; Engelhardt, E.; Wurm, F.; Gries, T. Application of polyvinylidene fluoride (PVDF) as a biomaterial in medical textiles. In Medical and Healthcare Textiles; Woodhead Publishing: Sawston, UK, 2010; pp. 342–352. [Google Scholar] [CrossRef]
- Shuai, C.; Liu, G.; Yang, Y.; Yang, W.; He, C.; Wang, G.; Liu, Z.; Qi, F.; Peng, S. Functionalized BaTiO3 enhances piezoelectric effect towards cell response of bone scaffold. Colloids Surfaces B Biointerfaces 2020, 185, 110587. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Haider, S.; Kang, I.-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Kapat, K.; Shubhra, Q.T.H.; Zhou, M.; Leeuwenburgh, S. Piezoelectric Nano-Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020, 30, 1909045. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201909045 (accessed on 21 October 2022). [CrossRef] [Green Version]
- Li, Y.; Liao, C.; Tjong, S.C. Electrospun Polyvinylidene Fluoride-Based Fibrous Scaffolds with Piezoelectric Characteristics for Bone and Neural Tissue Engineering. Nanomaterials 2019, 9, 952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyane, A.; Kim, H.; Furuya, T.; Kokubo, T.; Miyazaki, T.; Nakamura, T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. 2003, 65, 188–195. [Google Scholar] [CrossRef]
- Tas, A.C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37°C in synthetic body fluids. Biomaterials 2000, 21, 1429–1438. [Google Scholar] [CrossRef]
- Infante, T.P. Tiago Pinheiro Infante Optimizing the Osteogenic Potential of Electrospun PVDF Matrixes. Available online: http://hdl.handle.net/10362/92314 (accessed on 1 September 2022).
- Lim, Y.; Kim, S.; Seo, Y. Enhancement of β-phase in PVDF by electrospinning. AIP Conf. Proc. 2015, 1664, 070006. [Google Scholar] [CrossRef]
- He, Z.; Rault, F.; Lewandowski, M.; Mohsenzadeh, E.; Salaün, F. Electrospun PVDF Nanofibers for Piezoelectric Applications: A Review of the Influence of Electrospinning Parameters on the β Phase and Crystallinity Enhancement. Polymers 2021, 13, 174. [Google Scholar] [CrossRef]
- Esterly, D.M.; Love, B.J. Phase transformation to ?-poly(vinylidene fluoride) by milling. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 91–97. [Google Scholar] [CrossRef]
- Mokhtari, F.; Latifi, M.; Shamshirsaz, M. Electrospinning/electrospray of polyvinylidene fluoride (PVDF): Piezoelectric nanofibers. J. Text. Inst. 2016, 107, 1037–1055. [Google Scholar] [CrossRef]
- Bormashenko, Y.; Pogreb, R.; Stanevsky, O. Vibrational spectrum of PVDF and its interpretation. Polym. Test. 2004, 23, 791–796. [Google Scholar] [CrossRef]
- Benz, M.; Euler, W.B. Determination of the crystalline phases of poly(vinylidene fluoride) under different preparation conditions using differential scanning calorimetry and infrared spectroscopy. J. Appl. Polym. Sci. 2003, 89, 1093–1100. [Google Scholar] [CrossRef]
- Gaur, M.S.; Singh, P.K.; Ali, A.; Singh, R. Thermally stimulated discharge current (TSDC) characteristics in β-phase PVDF–BaTiO3 nanocomposites. J. Therm. Anal. 2014, 117, 1407–1417. [Google Scholar] [CrossRef]
- Ball, J.P.; Mound, B.A.; Nino, J.C.; Allen, J.B. Biocompatible evaluation of barium titanate foamed ceramic structures for orthopedic applications. J. Biomed. Mater. Res. Part A 2014, 102, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Gryshkov, O.; AL Halabi, F.; Kuhn, A.I.; Leal-Marin, S.; Freund, L.J.; Förthmann, M.; Meier, N.; Barker, S.-A.; Haastert-Talini, K.; Glasmacher, B. PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility. Int. J. Mol. Sci. 2021, 22, 11373. [Google Scholar] [CrossRef] [PubMed]
- Blaen, P.J.; Brekenfeld, N.; Comer-Warner, S.; Krause, S. Multitracer Field Fluorometry: Accounting for Temperature and Turbidity Variability during Stream Tracer Tests. Water Resour. Res. 2017, 53, 9118–9126. [Google Scholar] [CrossRef]
- Mozafari, M.; Banijamali, S.; Baino, F.; Kargozar, S.; Hill, R.G. Calcium carbonate: Adored and ignored in bioactivity assessment. Acta Biomater. 2019, 91, 35–47. [Google Scholar] [CrossRef]
Membrane | RPM | Flow Rate (mL/h) | Volume (mL) | PVDF:BT Ratio |
---|---|---|---|---|
SMZ | - | 0.75 | 0.5 | - |
RMX | 2500 | 1 | 1 | - |
RMY | 3000 | 1 | 1 | - |
RMZ | 3000 | 0.75 | 1 | - |
R3Y6 | 3000 | 1 | 1 | 6:1 (3 µm) |
R2Y4 | 3000 | 1 | 1 | 4:1 (2 µm) |
RNX3 | 2500 | 1 | 1 | 3:1 (280 nm) |
RNX6 | 2500 | 1 | 1 | 6:1 (280 nm) |
Membrane | Diameter (µm) |
---|---|
RMX | 1.20 ± 0.15 |
RMY | 1.15 ± 0.12 |
RMZ | 0.72 ± 0.13 |
R3Y6 | 0.70 ± 0.10 |
R2Y4 | 0.89 ± 0.13 |
RNX3 | 0.90 ± 0.13 |
RNX6 | 0.73 ± 0.10 |
Membrane | Living Cells (%) | Uncertainty (%) |
---|---|---|
RMY | 98 | ±3 |
RNX3 | 107 | ±5 |
RNX6 | 112 | ±5 |
R3Y6 | 109 | ±7 |
R2Y4 | 103 | ±7 |
Membrane | Ca | P | Ca/P |
---|---|---|---|
R3Y6 | 9.22 | 5.05 | 1.83 |
RNX3 | 9.36 | 5.57 | 1.69 |
RNX6 | 38.35 | 9.54 | 4.02 |
RMY | 9.48 | 4.95 | 1.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, S.D.; Silva, J.C.; Borges, J.P.M.R.; Lança, M.C. Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles. Macromol 2022, 2, 531-542. https://doi.org/10.3390/macromol2040034
Almeida SD, Silva JC, Borges JPMR, Lança MC. Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles. Macromol. 2022; 2(4):531-542. https://doi.org/10.3390/macromol2040034
Chicago/Turabian StyleAlmeida, Sérgio D., Jorge C. Silva, João P. M. R. Borges, and M. Carmo Lança. 2022. "Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles" Macromol 2, no. 4: 531-542. https://doi.org/10.3390/macromol2040034
APA StyleAlmeida, S. D., Silva, J. C., Borges, J. P. M. R., & Lança, M. C. (2022). Characterization of a Biocomposite of Electrospun PVDF Membranes with Embedded BaTiO3 Micro- and Nanoparticles. Macromol, 2(4), 531-542. https://doi.org/10.3390/macromol2040034