Avian Community Structure and Spatial Distribution in Anthropogenic Landscapes in Central Mexico
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Residency Status * | Habits † | Feeding Guilds ‡ | Habitats • | NOM-059 ◊ | IUCN ∆ |
---|---|---|---|---|---|---|
Accipiter cooperi | RES | TER | Ca | Gl, Al, Nr, W, Sm | Sp | LC |
Accipiter striatus | RES | TER | Ca | Gl, Al, Nr, W, Sm | Sp | LC |
Actitis macularia | MIG | AQ | In | W | LC | |
Aechmophorus clarkii | RES | AQ | Ca | W | LC | |
Aechmophorus occidentalis | RES | AQ | Ca | W | LC | |
Aeronautes saxatalis | RES | TER | In | Gl, Sm, Nr | LC | |
Agelaius phoeniceus | RES | TER | In, Gr | Gl, Al, W | LC | |
Aimophila rufescens | RES | TER | Gr | Gl, Sm | LC | |
Aimophila ruficeps | RES | TER | Gr | Gl, Sm | LC | |
Amazona albifrons | EXO | TER | Fr | Gl, Ur, Nr | LC | |
Amazona autumnalis | EXO | TER | Fr | Gl, Ur, Nr | LC | |
Ammodramus savannarum | MIG | TER | Gr | Gl, Sm | LC | |
Anas acuta | MIG | AQ | Om | W | LC | |
Anas crecca | MIG | AQ | Om | W | LC | |
Anas diazi | RES | AQ | Om | W | T | LC |
Anas platyrhynchos (domestic) | EXO | AQ | Om | W | LC | |
Anser albifrons (domestic) | EXO | AQ | Om | W | LC | |
Anser anser (domestic) | EXO | AQ | Om | W | LC | |
Anser cygnoides (domestic) | EXO | AQ | Om | W | LC | |
Anthus rubescens | MIG | TER | In | Gl, Al | LC | |
Aphelocoma ultramarina | RES | TER | Om | Nr | LC | |
Archilochus alexandri | MIG | TER | Ne | Nr | LC | |
Archilochus colubris | MIG | TER | Ne | Nr | LC | |
Ardea alba | MIG | AQ | Ca, In | W | LC | |
Ardea herodias | MIG | AQ | Ca, In | W | LC | |
Ardea ibis | EXO | TER | In | Gl, Al, W | LC | |
Asio flammeus | MIG | TER | Ca | Gl, Al | Sp | LC |
Athene cunicularia | RES | TER | In | Gl, Al | LC | |
Atthis heloisa | RES | TER | Ne | Nr | LC | |
Aythya affinis | MIG | AQ | Om | W | LC | |
Aythya americana | MIG | AQ | Om | W | LC | |
Aythya collaris | MIG | AQ | Om | W | LC | |
Aythya valisineria | MIG | AQ | Om | W | LC | |
Bartramia longicauda | MIG | AQ | In | W | LC | |
Basileuterus rufifrons | MIG | TER | In | Nr | LC | |
Basilinna leucotis | RES | TER | Ne | Nr | LC | |
Bombycilla cedrorum | MIG | TER | In, Fr | Nr | LC | |
Botaurus lentiginosus | RES | AQ | In | W | T | LC |
Bubo virginianus | RES | TER | Ca | Gl, Al, Nr | LC | |
Buteo brachyurus | RES | TER | Ca | Gl, Al, Nr | LC | |
Buteo jamaicensis | RES | TER | Ca | Gl, Al, Nr, Sm, Ur | LC | |
Buteo lineatus | MIG | TER | Ca | Gl, Al, Nr, Sm | LC | |
Buteo plagiatus | RES | TER | Ca | Gl, Al, Ur, Nr | LC | |
Buteo platypterus | MIG | TER | Ca | Gl, Al, Ur, Nr | Sp | LC |
Buteo swainsoni | MIG | TER | Ca | Gl, Al, Ur, Nr, Sm | Sp | LC |
Butorides virescens | MIG | AQ | Ca, In | W | LC | |
Cairina moschata (domestic) | EXO | AQ | Om | W | LC | |
Calidris alba | MIG | AQ | In | W | LC | |
Calidris alpina | MIG | AQ | In | W | LC | |
Calidris bairdii | MIG | AQ | In | W | LC | |
Calidris himantopus | MIG | AQ | In | W | LC | |
Calidris mauri | MIG | AQ | In | W | LC | |
Calidris melanotus | MIG | AQ | In | W | LC | |
Calidris minutilla | MIG | AQ | In | W | LC | |
Calidris pusilla | MIG | AQ | In | W | LC | |
Calothorax lucifer | RES | TER | Ne | Nr | LC | |
Camptostoma imberbe | RES | TER | In | Nr | LC | |
Campylorhynchus brunneicapillus | RES | TER | In | Sm | LC | |
Caracara cheriway | RES | TER | Ca, Sc | Gl, Al, Sm | LC | |
Cardellina pusilla | MIG | TER | In | Nr | LC | |
Cardinalis cardinalis | EXO | TER | Gr, Fr | Nr, Sm | LC | |
Cathartes aura | RES | TER | Sc | Gl, Al, Nr, Ur, Sm | LC | |
Catharus guttatus | MIG | TER | In | Nr | LC | |
Catherpes mexicanus | RES | TER | In | Nr, Sm | LC | |
Chaetura vauxi | RES | TER | In | Gl, Al, Sm | LC | |
Anarhynchus nivosus | MIG | AQ | In | W | T | NT |
Charadrius semipalmatus | MIG | AQ | In | W | LC | |
Charadrius vociferus | RES | AQ | In | W, Al, Gl | LC | |
Chlidonias niger | MIG | AQ | In | W | LC | |
Chondestes grammacus | MIG | TER | Gr | Gl, Sm, Nr | LC | |
Chordeiles acutipennis | RES | TER | In | Gl, Sm | LC | |
Circus hudsonius | MIG | TER | Ca | Gl, Al, Sm, Nr | LC | |
Cistothorus palustris | RES | TER | In | W | LC | |
Cistothorus platensis | RES | TER | In | W | LC | |
Coccyzus americanus | MIG | TER | In | Nr, Sm | LC | |
Colaptes auratus | RES | TER | In | Nr | LC | |
Colibri thalassinus | RES | TER | Ne | Nr | LC | |
Colinus virginianus | RES | TER | Gr | Al, Sm | LC | |
Columba livia | EXO | TER | Om | Ur, Al | LC | |
Columbina inca | RES | TER | Gr | Ur, Gl, Al, Nr, Sm | LC | |
Columbina passerina | RES | TER | Gr | Gl | LC | |
Columbina tapalcoti | EXO | TER | Gr | Gl | LC | |
Contopus cooperii | MIG | TER | In | Gl, Nr | LC | |
Contopus pertinax | RES | TER | In | Gl, Nr | LC | |
Contopus sordidulus | MIG | TER | In | Gl, Nr | LC | |
Coragyps atratus | MIG | TER | Sc | Gl, Al | LC | |
Corthylio calendula | MIG | TER | In | Nr | LC | |
Corvus corax | RES | TER | Om | Gl, Al, Sm | LC | |
Crotophaga sulcirostris | RES | TER | Gr, Fr | Gl, Al | LC | |
Cyanocorax yncas | EXO | TER | Om | Nr, Sm | LC | |
Cynanthus latirostris | RES | TER | Ne | Nr | LC | |
Cyrtonyx montezumae | RES | TER | Gr | Sm, Al | Sp | LC |
Dendrocygna autumnalis | RES | AQ | Om | W | LC | |
Dendrocygna bicolor | RES | AQ | Om | W | LC | |
Diglossa baritula | RES | TER | Ne | Nr | LC | |
Dryobates scalaris | RES | TER | In | Nr, Sm, Al | LC | |
Egretta caerulea | MIG | AQ | Ca, In | W | LC | |
Egretta thula | MIG | AQ | Ca, In | W | LC | |
Egretta tricolor | MIG | AQ | Ca, In | W | LC | |
Elanus leucurus | RES | TER | Ca | Gl, Al | LC | |
Empidonax fulvifrons | RES | TER | In | Nr | LC | |
Empidonax hammondii | MIG | TER | In | Nr | LC | |
Empidonax minimus | MIG | TER | In | Nr | LC | |
Empidonax oberholseri | MIG | TER | In | Nr | LC | |
Empidonax occidentalis | RES | TER | In | Nr | LC | |
Empidonax traillii | MIG | TER | In | Nr | LC | |
Empidonax wrightii | MIG | TER | In | Nr | LC | |
Eremophila alpestris | RES | TER | Gr | Al | LC | |
Eugenes fulgens | RES | TER | Ne | Nr | LC | |
Euphagus cyanocephalus | RES | TER | Om | W, Al | LC | |
Eupsittula canicularis | EXO | TER | Fr | Gl, Ur | LC | |
Falco columbarius | MIG | TER | Ca | Gl, Al, Sm | LC | |
Falco peregrinus | RES | TER | Ca | Gl, Al, Sm | LC | |
Falco sparverius | MIG | TER | Ca, In | Gl, Al, Sm, Nr | LC | |
Fulica americana | RES | AQ | Om | W | LC | |
Gallinago delicata | MIG | AQ | In | W | LC | |
Gallinula galeata | MIG | AQ | Om | W | LC | |
Gelochelidon nilotica | MIG | AQ | Ca, In | W | LC | |
Geococcyx californianus | RES | TER | Ca, In | Sm | LC | |
Geothlypis tolmiei | MIG | TER | In | W | LC | |
Geothlypis trichas | RES | TER | In | W | LC | |
Glaucidium gnoma | RES | TER | In | Sm | LC | |
Haemorhous mexicanus | RES | TER | Gr | Al, Ur, Nr, Gl, Sm | LC | |
Himantopus mexicanus | MIG | AQ | In | W | LC | |
Hirundo rustica | MIG | TER | In | Al, Sm, Gl, W, Nr, Ur | LC | |
Hydroprogne caspia | MIG | AQ | Ca, In | W | LC | |
Icteria virens | MIG | TER | In | Nr | LC | |
Icterus abeillei | RES | TER | In, Fr | Nr | LC | |
Icterus bullockii | RES | TER | In, Fr | Nr, Sm | LC | |
Icterus cucullatus | MIG | TER | In, Fr | Nr | LC | |
Icterus galbula | MIG | TER | In, Fr | Sm | LC | |
Icterus parisorum | RES | TER | In, Fr | Sm | LC | |
Icterus pustulatus | EXO | TER | In, Fr | Nr | LC | |
Icterus spurius | MIG | TER | In | W, Al | LC | |
Icterus wagleri | RES | TER | In, Fr | Nr, Sm | LC | |
Junco phaeonotus | RES | TER | Gr | Gl, Sm | LC | |
Lampornis clemenciae | RES | TER | Ne | Nr | LC | |
Lanius ludovicianus | RES | TER | Ca, In | Gl, Al, Nr, Sm | LC | |
Larus delawarensis | MIG | AQ | Ca, In | W | LC | |
Leiothlypis ruficapilla | MIG | TER | In | Nr | LC | |
Leiothlypis celata | MIG | TER | In | Nr | LC | |
Leiothlypis peregrina | MIG | TER | In | Nr | LC | |
Leiothlypis virginiae | MIG | TER | In | Nr | LC | |
Leptotila verreauxi | RES | TER | Gr | Gl, Sm | LC | |
Leucolia violiceps | RES | TER | Ne | Nr | LC | |
Leucophaeus atricilla | MIG | AQ | Ca, In | W | LC | |
Leucophaeus pipixcan | MIG | AQ | Ca, In | W | LC | |
Limnodromus griseus | MIG | AQ | In | W | LC | |
Limnodromus scolopaceus | MIG | AQ | In | W | LC | |
Limosa haemastica | MIG | AQ | In | W | LC | |
Mareca americana | MIG | AQ | Om | W | LC | |
Mareca penelope | MIG | AQ | Om | W | LC | |
Mareca strepera | MIG | AQ | Om | W | LC | |
Megaceryle alcyon | MIG | TER | Ca | W | LC | |
Melanerpes aurifrons | RES | TER | In | Nr | LC | |
Melanerpes formicivorus | RES | TER | In | Nr | LC | |
Melanotis caerulescens | RES | TER | Om | Nr | LC | |
Melopsittacus undulatus | EXO | TER | Gr | Gl, Al, Ur | LC | |
Melospiza lincolnii | RES | TER | Gr | Gl | LC | |
Melospiza melodia | RES | TER | Gr | Gl, W | LC | |
Melozone fusca | RES | TER | Gr | Gl, Nr, Ur, Al, Sm | LC | |
Mimus polyglottos | RES | TER | In | Nr, Al, Ur, Sm | LC | |
Mitrephanes phaeocercus | RES | TER | In | Nr | LC | |
Mniotilta varia | MIG | TER | In | Nr | LC | |
Molothrus aeneus | RES | TER | Gr | Gl, Al, W | LC | |
Molothrus ater | RES | TER | Gr | Gl, Al, W | LC | |
Myiarchus cinerascens | MIG | TER | In | Gl, Nr, Sm | LC | |
Myiarchus crinitus | MIG | TER | In | Nr | LC | |
Myiarchus nuttingi | RES | TER | In | Nr | LC | |
Myioborus pictus | RES | TER | In | Nr | LC | |
Myiopsitta monachus | EXO | TER | Fr | Nr, Ur | LC | |
Nannopterum auritus | MIG | AQ | Ca | W | LC | |
Nannopterum brasilianum | MIG | AQ | Ca | W | LC | |
Numenius americanus | MIG | AQ | Om | W | LC | |
Numida meleagris | EXO | TER | Gr | Gl | LC | |
Nycticorax nycticorax | RES | AQ | Ca, In | W | LC | |
Nyctinassa violacea | MIG | AQ | Ca, In | W | LC | |
Oreothlypis superciliosa | MIG | TER | In | Nr | LC | |
Oriturus superciliosus | RES | TER | In | Nr | LC | |
Oxyura jamaicensis | RES | AQ | Om | W | LC | |
Pandion haliaetus | MIG | TER | Ca | Al, W | LC | |
Parabuteo unicinctus | EXO | TER | Ca | Gl, Al, Ur, Nr | LC | |
Parkesia noveboracensis | MIG | TER | In | Nr | LC | |
Passer domesticus | EXO | TER | Om | Ur, Al, Gl, Sm, W, Nr | LC | |
Passerculus sandwichensis | RES | TER | Gr | Gl, Sm, W, Al | LC | |
Passerina caerulea | RES | TER | In, Gr | Gl, Al, Nr, Sm | LC | |
Passerina ciris | MIG | TER | Gr | Gl | Sp | LC |
Passerina cyanea | MIG | TER | Gr | Gl, Al, Nr | LC | |
Passerina versicolor | RES | TER | Gr | Gl, Al, Nr | LC | |
Pavo cristatus | EXO | TER | Gr | Gl | LC | |
Pelecanus erythrorynchus | MIG | AQ | Ca | W | LC | |
Petrochelidon pyrrhonota | RES | TER | In | Al, W | LC | |
Peucaea botterii | RES | TER | Gr | Gl, Sm | LC | |
Peucedramus taeniatus | RES | TER | In | Nr | LC | |
Phainopepla nitens | MIG | TER | In | Nr, Sm | LC | |
Phalaropus lobatus | MIG | AQ | In | W | LC | |
Phalaropus tricolor | MIG | AQ | In | W | LC | |
Phasianus colchicus | EXO | TER | Gr | Gl | LC | |
Pheucticus ludovicianus | RES | TER | In | Nr | LC | |
Pheucticus melanocephalus | RES | TER | Gr | Nr | LC | |
Phoenicopterus ruber | EXO | AQ | Om | W | LC | |
Pipilo chlorurus | RES | TER | Gr | Sm | LC | |
Pipilo maculatus | RES | TER | Gr | Sm | LC | |
Piranga flava | RES | TER | In | Nr | LC | |
Piranga ludoviciana | MIG | TER | In | Nr | LC | |
Piranga rubra | MIG | TER | In | Nr | LC | |
Plegadis chihi | RES | AQ | In | W | LC | |
Pluvialis dominica | MIG | AQ | In | W | LC | |
Pluvialis squatorola | MIG | AQ | In | W | LC | |
Podiceps nigricollis | RES | AQ | In | W | LC | |
Podylimbus podiceps | RES | AQ | In | W | LC | |
Polioptila caerulea | MIG | TER | In | Nr, Gl, Sm | LC | |
Pooecetes gramineus | MIG | TER | Gr | Gl, Al, Sm | LC | |
Porphyrio martinicus | MIG | AQ | In | W | LC | |
Porzana carolina | MIG | AQ | In | W | LC | |
Progne chalybea | MIG | TER | In | Sm | LC | |
Psaltriparus minimus | RES | TER | In | Nr | LC | |
Ptiliogonys cinereus | RES | TER | In | Nr | LC | |
Pyrocephalus rubinus | RES | TER | In | Gl, Al, W, Ur, Nr, Sm | LC | |
Quiscalus mexicanus | EXO | TER | Om | Ur, Al, W, Nr, Sm, Gl | LC | |
Rallus limicola | RES | AQ | In | W | LC | |
Rallus tenuirostris | RES | AQ | In | W | NT | |
Recurvirostra americana | RES | AQ | In | W | LC | |
Riparia riparia | MIG | TER | In | W | LC | |
Salpinctes obsoletus | RES | TER | In | Nr, Sm | LC | |
Saucerottia beryllina | RES | TER | Ne | Nr | LC | |
Sayornis nigricans | RES | TER | In | W | LC | |
Sayornis phoebe | MIG | TER | In | Nr | LC | |
Sayornis saya | MIG | TER | In | Gl, Sm, Al | LC | |
Selasphorus platycercus | RES | TER | Ne | Nr | LC | |
Selasphorus rufus | MIG | TER | Ne | Nr | LC | |
Setophaga coronata | MIG | TER | In | Nr, Ur | LC | |
Setophaga nigrescens | MIG | TER | In | Nr | LC | |
Setophaga occidentalis | MIG | TER | In | Nr | LC | |
Setophaga palmarum | MIG | TER | In | Nr | LC | |
Setophaga petechia | MIG | TER | In | Nr | LC | |
Setophaga pitiayumi | MIG | TER | In | Nr | LC | |
Setophaga ruticilla | MIG | TER | In | Nr | LC | |
Setophaga townsendi | MIG | TER | In | Nr | LC | |
Setophaga virens | MIG | TER | In | Nr | LC | |
Sicalis luteola | MIG | TER | Gr | Gl | LC | |
Sitta canadensis | MIG | TER | In | Nr | LC | |
Spatula clypeata | MIG | AQ | Om | W | LC | |
Spatula cyanoptera | RES | AQ | Om | W | LC | |
Spatula discors | MIG | AQ | Om | W | LC | |
Sphyrapicus varius | RES | TER | In | Nr | LC | |
Spinus pinus | MIG | TER | Gr | Nr, Sm | LC | |
Spinus psaltria | RES | TER | Gr | Al, Nr, Gl, Ur, Sm | LC | |
Spiza americana | MIG | TER | Gr | Gl | LC | |
Spizella atrogularis | RES | TER | Gr | Gl, Sm | LC | |
Spizella pallida | MIG | TER | Gr | Gl, Sm | LC | |
Spizella passerina | RES | TER | Gr | Gl, Sm | LC | |
Sporophila torqueola | RES | TER | Gr | W | LC | |
Stelgidopteryx serripennis | RES | TER | In | Al, W, Ur, Sm, Gl, Nr | LC | |
Sterna forsteri | MIG | AQ | Ca, In | W | LC | |
Sterna hirundo | MIG | AQ | Ca, In | W | LC | |
Streptopelia decaocto | EXO | TER | Om | Ur, Nr, Al | LC | |
Sturnella magna | RES | TER | In | Al, Gl, Sm | LC | |
Sturnus vulgaris | EXO | TER | Om | Ur, Al, Nr | LC | |
Tachybaptus dominicus | MIG | AQ | Ca, In | W | Sp | LC |
Tachycineta bicolor | MIG | TER | In | Al, W | LC | |
Tachycineta thalassina | RES | TER | In | Al, W | LC | |
Thryomanes bewickii | RES | TER | In | Nr, W, Sm, Ur | LC | |
Toxostoma curvirostre | RES | TER | In | Nr, Al, Ur, Sm | LC | |
Tringa flavipes | MIG | AQ | In | W | LC | |
Tringa melanoleuca | MIG | AQ | In | W | LC | |
Tringa semipalmata | MIG | AQ | In | W | LC | |
Tringa solitaria | MIG | AQ | In | W | LC | |
Troglodytes aedon | RES | TER | In | Nr, Sm | LC | |
Turdus migratorius | RES | TER | In | Nr | LC | |
Turdus rufopalliatus | RES | TER | In | Nr, Ur | LC | |
Tyrannus forficatus | MIG | TER | In | Gl, Nr | LC | |
Tyrannus melancholicus | RES | TER | In | Gl, Nr | LC | |
Tyrannus tyrannus | MIG | TER | In | Gl | LC | |
Tyrannus verticalis | MIG | TER | In | Gl, Nr, Sm | LC | |
Tyrannus vociferans | RES | TER | In | Gl, Nr, Sm, Ur | LC | |
Tyto furcata | RES | TER | Ca | Gl, Al, Nr, Ur | LC | |
Vermivora chrysoptera | MIG | TER | In | Nr | LC | |
Vireo bellii | MIG | TER | In | Nr | LC | |
Vireo cassini | MIG | TER | In | Nr | LC | |
Vireo gilvus | MIG | TER | In | Nr | LC | |
Vireo griseus | MIG | TER | In | Nr | LC | |
Vireo huttoni | RES | TER | In | Nr | LC | |
Vireo plumbeus | MIG | TER | In | Nr | LC | |
Vireo solitarius | MIG | TER | In | Nr | LC | |
Volatinia jacarina | RES | TER | Gr | Gl | LC | |
Xanthocephalus xanthocephalus | MIG | TER | Gr | Al, Gl, W | LC | |
Zenaida asiatica | RES | TER | Gr, Fr | Gl, Ur, Al, Nr, Sm | LC | |
Zenaida macroura | RES | TER | Gr, Fr | Gl, Al, Sm | LC | |
Zonotrichia leucophrys | RES | TER | Gr | Gl | LC |
Predictors | Estimates | 95% CI | p |
---|---|---|---|
Overall species richness | |||
Intercept) | 74.81 | 48.88–100.75 | <0.001 |
Dgs | 1.01 | −2.18–4.21 | 0.533 |
Season [warm–dry] | −1.55 | −11.74–8.64 | 0.763 |
Season [rainy] | −34.97 | −44.73–−25.22 | <0.001 |
Dgs × Season [warm–dry] | −0.76 | −2.02–0.49 | 0.232 |
Dgs × Season [rainy] | 2.39 | 1.19–3.59 | <0.001 |
Random effects: Σ2Site = 167.3, Σ2Residual = 127.08 | |||
Resident species richness | |||
(Intercept) | 40.11 | 26.96–53.27 | <0.001 |
Dgs | 1.25 | −0.37–2.87 | 0.130 |
Season [warm–dry] | 3.56 | −4.30–11.42 | 0.372 |
Season [rainy] | −13.07 | −20.59–−5.54 | 0.001 |
Dgs × season [warm–dry] | −0.69 | −1.66–0.28 | 0.162 |
Dgs × season [rainy] | 2.12 | 1.20–3.05 | <0.001 |
Random effects: Σ2Site = 39.99, Σ2Residual = 75.57 | |||
Migrant species richness | |||
(Intercept) | 32.99 | 26.12–39.85 | <0.001 |
Season [warm–dry] | −5.64 | −8.87–−2.42 | 0.001 |
Season [rainy] | −19.96 | −23.05–−16.87 | <0.001 |
Random effects: Σ2Site = 55.77, Σ2Residual = 62.17 | |||
Shannon diversity index | |||
(Intercept) | 3.19 | 3.09–3.29 | <0.001 |
Season [warm–dry] | 0.06 | −0.07–0.19 | 0.378 |
Season [rainy] | −0.33 | −0.45–−0.20 | <0.001 |
Random effects: Σ2Site = 0.01, Σ2Residual = 0.10 | |||
Log (Abundance) | |||
(Intercept) | 7.96 | 7.22–8.71 | <0.001 |
Random effects: Σ2Site = 0.68, Σ2Residual = 0.77 | |||
Evenness | |||
(Intercept) | 0.78 | 0.76–0.80 | <0.001 |
Random effects: Σ2Site = 0.0004732, Σ2Residual = 0.0048856 |
References
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef] [PubMed]
- Clergeau, P.; Jokimäki, J.; Savard, J.-P.L. Are urban bird communities influenced by the bird diversity adjacent landscapes. J. Appl. Ecol. 2002, 38, 1122–1134. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Grove, J.M.; Boone, C.G.; Groffman, P.M.; Irwin, E.; Kaushal, S.S.; Marshall, V.; McGrath, B.P.; Nilon, C.H.; et al. Urban ecological systems: Scientific foundations and a decade of progress. J. Environ. Man. 2011, 92, 331–362. [Google Scholar] [CrossRef]
- Marzluff, J.M. Worldwide Urbanization and its Effects on Birds. In Avian Ecology and Conservation in a Urbanizing World; Marzluff, J.M., Bowman, R., Donelly, R., Eds.; Springer: Boston, MA, USA, 2001. [Google Scholar]
- Santos, E.G.; Wiederhecker, H.C.; Pompermaier, V.T.; Gainsbury, A.M.; Schirmer, S.C.; Morais, C.V.F.; Fontenele, J.L.; Santana, M.C.d.M.; Marini, M.Â. Urbanization reduces diversity, simplifies community and filter bird species based on their functional traits in a tropical city. Sci. Total Environ. 2024, 935, 173379. [Google Scholar] [CrossRef]
- Larsen, S.; Sorace, A.; Mancini, L. Riparian bird communities as indicators of human impact along Mediterranean streams. Environ. Manag. 2010, 45, 261–273. [Google Scholar] [CrossRef]
- Maznikova, V.N.; Ormerod, S.J.; Gómez-Serrano, M.A. Birds as bioindicators of river pollution and beyond: Specific and general lessons from an apex predator. Ecol. Ind. 2024, 158, 11136. [Google Scholar] [CrossRef]
- Harisha, M.N.; Hosetti, B.B. Diversity and distribution of avifauna of Lakka Walli range forest, Bhadra Wildlife Sanctuary, western Ghat, India. Ecoprint 2009, 16, 21–27. [Google Scholar]
- Choudaj, K.; Wankhade, V. Reduction in avian diversity due to exotic tree plantations on the native savannas of Pune City, India. Trop. Ecol. 2021, 62, 499–507. [Google Scholar] [CrossRef]
- Anderle, M.; Brambilla, M.; Hilpold, A.; Matabishi, J.G.; Paniccia, C.; Rocchini, D.; Rossin, J.; Tasser, E.; Torresani, M.; Tappeiner, U.; et al. Habitat heterogeneity promotes bird diversity in agricultural landscapes: Insights from remote sensing data. Basic. Appl. Ecol. 2023, 70, 38–49. [Google Scholar] [CrossRef]
- Sultana, M.; Corlatti, L.; Storch, I. The interaction and habitat heterogeneity drives bird richness patterns in south Asian cities. Urban Ecosyst. 2021, 24, 335–344. [Google Scholar] [CrossRef]
- Chapman, K.A.; Reich, P.B. Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. Biol. Conserv. 2007, 135, 527–541. [Google Scholar] [CrossRef]
- Coetzee, B.W.T.; Chown, S.L. Land-use change promotes avian diversity at the expense of species with unique traits. Ecol. Evol. 2016, 6, 7610–7622. [Google Scholar] [CrossRef]
- Sousa, N.O.d.M.; Lopes, L.E.; Costa, L.M.; Motta-Junior, J.C.; de Freitas, G.H.S.; Dornas, T.; de Vasconcelos, M.F.; Nogueira, W.; Tolentino, V.C.d.M.; De-Carvalho, C.B.; et al. Adopting habitat-use to infer movement potential and sensitivity to human disturbance of birds in a Neotropical savannah. Biol. Conserv. 2021, 254, 108921. [Google Scholar] [CrossRef]
- Partecke, J.; Schwabl, I.; Gwinner, E. Stress and the city: Urbanization and its effects on the stress physiology in European blackbirds. Ecology 2006, 87, 1945–1952. [Google Scholar] [CrossRef]
- Kurucz, K.; Purger, J.J.; Batáry, P. Urbanization shapes bird communities and nest survival, but not their food quantify. Glob. Ecol. Conserv. 2021, 26, e01975. [Google Scholar] [CrossRef]
- Amaya-espinel, J.; Hostetler, M. The value of small forest fragments and urban tree canopy for Neotropical migrant birds during winter and migration seasons in Latin America countries: A systematic review. Landsc. Urban Plan. 2019, 190, 103592. [Google Scholar] [CrossRef]
- Asefa, A.; Davies, A.B.; McKechnie, A.E.; Kinahan, A.A.; van Rensburg, B.J. Effects of anthropogenic disturbance on bird diversity in Ethiopian montane forests. Condor 2017, 119, 416–430. [Google Scholar] [CrossRef]
- Matuoka, M.A.; Benchimol, M.; de Almeida-Rocha, J.M.; Morante-Filho, J.C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Ind. 2020, 116, 106471. [Google Scholar] [CrossRef]
- Soifer, L.G.; Donovan, S.K.; Brentjens, E.T.; Bratt, H.R. Piecing together cities to support bird diversity: Development and forest edge density affect bird richness in urban environments. Landsc. Urban Plan. 2021, 213, 104122. [Google Scholar] [CrossRef]
- Pena, J.C.; Ovaskainen, O.; MacGregor-Fors, I.; Teixeira, C.P.; Ribeiro, M.C. The relationships between urbanization and bird functional traits across the streetscape. Landsc. Urban Plan. 2023, 232, 104685. [Google Scholar] [CrossRef]
- Ramírez-Albores, J.E.; Sánchez-González, L.A.; Pérez-Suárez, M.; Navarro-Sigüenza, A.G.; Franco-Maass, S. Greenspaces as shelters for the conservation of bird diversity in a big city. Urban Ecosyst. 2024, 27, 2047–2059. [Google Scholar] [CrossRef]
- Charre, G.M.; Zavala, A.; Néve, G.; Ponce-Mendoza, A.; Corcuera, P. Relationship between habitat traits and bird diversity and com position in selected urban green areas of Mexico City. Ornitol. Neotrop. 2013, 24, 275–293. [Google Scholar]
- MacGregor-Fors, I.; Escobar, F.; Rueda-Hernández, R.; Avendaño-Reyes, S.; Baena, M.L.; Bandala, V.M.; Chacón-Zapata, S.; Guillén-Servent, A.; González-García, F.; Lorea-Hernández, F.; et al. City green contributions: The role of urban greenspaces as reservoirs for biodiversity. Forest 2016, 7, 146. [Google Scholar] [CrossRef]
- Edeigba, B.; Ashinze, U.K.; Umoh, A.A.; Biu, P.W. Urban green spaces and their impact on environmental health: A global review. World J. Adv. Res. Rev. 2024, 21, 917–927. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, H. A comprehensive review of the environmental benefit of urban green spaces. Environ. Res. 2024, 252, 118837. [Google Scholar] [CrossRef]
- Everard, M. Agricultural Management and Wetlands: An Overview. In The Wetland Book; Finlayson, C., Ed.; Springer: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Johnson, P.T.J.; Hoverman, J.T.; McKenzie, V.J.; Blaustein, A.R.; Richgels, K.L.D. Urbanization and Wetland communities: Applying metacommunity theory to understand the local and landscape effects. J. Appl. Ecol. 2013, 50, 34–42. [Google Scholar] [CrossRef]
- Alikhani, S.; Nummi, P.; Ojala, A. Urban Wetlands: A review on ecological and cultural values. Water 2021, 13, 3301. [Google Scholar] [CrossRef]
- Reis, E.; López-Ibarra, G.M.; Torres, R. Changes in bird species richness through different levels of urbanization: Implications for biodiversity conservation and garden design in central Brazil. Landsc. Urban Plan. 2012, 107, 31–42. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Qi, K.; Luo, Z.; Wang, X. Detecting the response of bird communities and biodiversity to habitat loss and fragmentation due to urbanization. Sci. Total Environ. 2018, 624, 1561–1576. [Google Scholar] [CrossRef]
- United Nations. 2018 Revision of World Urbanization Prospects; United Nations: New York, NY, USA, 2018; Available online: https://population.un.org/wup/ (accessed on 1 December 2024).
- Peterson, A.T.; Navarro-Sigüenza, A.G. Hundred-year changes in the avifauna of the Valley of Mexico, Distrito Federal, Mexico. Huitzil 2006, 7, 4–14. [Google Scholar]
- Navarro-Sigüenza, A.G.; Rebón-Gallardo, M.F.; Gordillo-Martínez, A.; Peterson, A.T.; Berlanga, H.; Sánchez-González, L.A. Biodiversidad de aves. Rev. Mex. Biodivers. 2014, 85, S476–S495. [Google Scholar] [CrossRef]
- Pacheco-Muñoz, R.; Aguilar-Gómez, M.A.; Schondube, J.E. Overwintering in a megacity? Urban green areas and migratory birds in Mexico City. Urban For. Urban Green. 2022, 73, 127614. [Google Scholar] [CrossRef]
- Şekercioğlu, C.H.; Daily, G.C.; Ehrlich, P.R. Ecosystem consequences of bird declines. Proc. Natl. Acad. Sci. USA 2005, 101, 18042–18047. [Google Scholar] [CrossRef]
- Wilkie, D.S.; Bennett, E.L.; Peres, C.A.; Cunningham, A.A. The empty forest revisited. Ann. N. Y. Acad. Sci. 2011, 1223, 120–128. [Google Scholar]
- Reed, D.H.; Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Melbourne, B.A.; Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 2008, 454, 100–103. [Google Scholar] [CrossRef]
- INEGI (Instituto Nacional de Geografía y Estadística). Censo de Población y Vivienda 2020; INEGI: Aguascalientes, México, 2020. [Google Scholar]
- Behzadi, F.; Wasti, A.; Rahat, S.H.; Tracy, J.N.; Ray, P.A. Analysis of the climate change signal in Mexico City given disagreeing data sources and scattered projections. J. Hydrol. 2020, 27, 100662. [Google Scholar] [CrossRef]
- Sorani, V.; Rodríguez, G.; Reygadas, D.D. Usos y Cobertura de Suelo. In La Biodiversidad de la Ciudad de Mexico; Conabio, Ed.; Conabio: Mexico City, Mexico, 2016; pp. 104–112. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyuschenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Emlen, J.T. Population densities of birds derived from transect counts. Auk 1971, 88, 323–342. [Google Scholar] [CrossRef]
- Emlen, J.T. Estimating breeding season bird densities from transect counts. Auk 1977, 94, 455–468. [Google Scholar]
- Peterson, R.T.; Chalif, E.L. Aves de México, Guía de Campo; Editorial Diana: México, 1989. [Google Scholar]
- Kauffman, K. Kaufmann Field Guide to Birds of North America; Houghton Mifflin Harcourt: Boston, MA, USA, 2005. [Google Scholar]
- Dunn, J.L.; Alderfer, J. Field Guide to the Birds of North America; National Geographic Society: Washington, DC, USA, 2008. [Google Scholar]
- Sibley, D.A. The Sibley Guide to Birds, 2nd ed.; Knopf: New York, NY, USA, 2014. [Google Scholar]
- Chesser, R.T.; Billerman, S.M.; Burns, K.J.; Cicero, C.; Dunn, J.L.; Hernández-Baños, B.E.; Jiménez, R.A.; Johnson, O.; Kratter, A.W.; Mason, N.A.; et al. Checklist of North. American Birds; American Ornithologists’ Union: Chicago, IL, USA, 2024; Available online: https://checklist.americanornithology.org/taxa/ (accessed on 22 March 2025).
- Howell, S.N.G.; Webb, S. A Guide to the Birds of Mexico and Northern Central America; Oxford University Press: New York, NY, USA, 1995. [Google Scholar]
- NOM-059-ECOL-2010; Protección ambiental-especies nativas de México de flora y fauna silvestres categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-lista de especies en riesgo. Secretaria de Medio Ambiente y Recursos Naturales: Mexico City, Mexico, 2010.
- IUCN (International Union for Conservation of Nature). Red List of Threatened Species-International Union for Conservation of Nature. 2024. Available online: https://www.iucnredlist.org/ (accessed on 29 September 2024).
- González-Salazar, C.; Martínez-Meyer, E.; López-Santiago, G. A hierarchical classification of trophic guilds for North America birds and mammals. Rev. Mex. Biodivers. 2014, 85, 931–941. [Google Scholar] [CrossRef]
- Kindt, R.; Coe, R. Tree Diversity Analysis. In A Manual and Software for Common Statistical Methods and Biodiversity Studies; World Agroforestry Centre: Nairobi, Kenya, 2005. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Kindt, R.; Legendre, P.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Wagner, H. Vegan: Community Ecology Package, Version 2.5-7; Research Gate: Berlin, Germany, 2020; Available online: https://CRAN.R-project.org/package=vegan (accessed on 21 September 2024).
- Allaire, J.J. RStudio: Integrated Development Environment for R; Posif Software, PBC: Boston, MA, USA, 2023. [Google Scholar]
- Gelman, A.; Su, Y.-S. arm: Data Analysis Using Regression and Multilevel/Hierarchical Models. Available online: https://cran.r-project.org/package=arm (accessed on 6 March 2025).
- Arnold, T.W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 2010, 74, 1175–1178. [Google Scholar]
- Harrison, X.A.; Donaldson, L.; Correa-Cano, M.E.; Evans, J.; Fisher, D.N.; Goodwin, C.E.D.; Robinson, B.S.; Hodgson, D.J.; Inger, R. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 2018, 6, e4794. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025; Available online: https://www.r-project.org/ (accessed on 6 March 2025).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. Available online: https://github.com/lme4/lme4/; http://lme4.r-forge.r-project.org/ (accessed on 6 March 2025).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar]
- Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2025. Available online: https://cran.r-project.org/package=emmeans (accessed on 6 March 2025).
- Lüdecke, D. ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. J. Open Source Softw. 2018, 3, 722. [Google Scholar]
- Wickham, H. ggplot. Elegant Graphics for Date Analysis; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Cluster Analysis, 5th ed.; Wiley and Sons: Chichester, UK, 2011. [Google Scholar]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological sta tistic software package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- McAleece, N.; Gage, J.D.G.; Lambshead, P.J.D.; Paterson, G.L.J. BioDiversity Professional Statistics Analysis Software; The Scottish Association for Marine Science and the Natural History Museum: London, UK, 1997. [Google Scholar]
- Squalli, W.; Mansouri, I.; Douini, I.; Achiban, H.; Fadil, F.; Dakki, M.; Wink, M. Diversity of avian species in peri-urban landscapes surrounding Fez in Morocco: Species richness, breeding populations, and evaluation of menacing factors. Diversity 2022, 14, 945. [Google Scholar] [CrossRef]
- Karjee, R.; Palei, H.S.; Konwar, A.; Gogoi, A.; Mishra, R.K. Bird Assemblages in a Peri-Urban Landscape in Eastern India. Birds 2022, 3, 383–401. [Google Scholar] [CrossRef]
- Leveau, L.M.; Ruggiero, A.; Matthews, T.J.; Bellocq, M.I. A global consistent positive effect of urban green area size on bird richness. Avian Res. 2019, 10, 30. [Google Scholar] [CrossRef]
- Rico-Silva, J.F.; Cruz-Trujillo, E.J.; Colorado, G.J. Influence of environmental factor son bird diversity in greenspaces in an Amazonia city. Urban Ecosyst. 2020, 24, 365–374. [Google Scholar] [CrossRef]
- Zhao, Z.; Borzée, A.; Li, J.; Chen, S.; Shi, H.; Zhang, Y. Urban bird community assembly mechanisms and driving factors in University campuses in Nanjing, China. Animals 2023, 13, 673. [Google Scholar] [CrossRef]
- Carbó-Ramírez, P.; Zuria, I. The value of small urban greenspaces for birds in a Mexican city. Landsc. Urban Plan. 2011, 100, 213–222. [Google Scholar] [CrossRef]
- Enedino, T.R.; Loures-Ribeiro, A.; Santos, B.A. Protecting biodi versity in urbanizing regions: The role of urban reserves for the conservation of Brazilian Atlantic Forest birds. Perspect. Ecol. Conserv. 2018, 16, 17–23. [Google Scholar] [CrossRef]
- Dale, S. Urban bird community composition influenced by size of urban green spaces, presence of native forest, and urbanization. Urban Ecosyst. 2018, 21, 1–14. [Google Scholar] [CrossRef]
- Nava-Díaz, R.; Pineda-López, R.; Dorantes-Euan, A. Drives of functional composition of bird assemblages in green spaces of a neotropical city: A case study from Merida, Mexico. Trop. Conserv Sci. 2020, 13, 1940082920923896. [Google Scholar] [CrossRef]
- Korányi, D.; Gallé, R.; Donkó, B.; Chamberlain, D.E.; Batáry, P. Urbanization does not affect greenspace bird species richness in a mid-sized city. Urban Ecosyst 2021, 24, 789–800. [Google Scholar] [CrossRef]
- Morelli, F.; Mikula, P.; Benedetti, Y.; Bussière, R.; Tryjanowski, P. Cemeteries support avian diversity likewise urban parks in European cities: Assessing taxonomic, evolutionary and functional diversity. Urban For. Urban Green. 2018, 36, 90–99. [Google Scholar] [CrossRef]
- Leveau, L.M.; Bocelli, M.L.; Quesada-Acuña, S.G.; González-Lagos, C.; Tapia, P.G.; Dri, G.F.; Delgado, V.C.A.; Garitano-Zavala, Á.; Campos, J.; Benedetti, Y.; et al. Bird diversity-environment relationships in urban parks and cemeteries of the Neotropics driving breeding and non-breeding seasons. PeerJ 2022, 10, e14496. [Google Scholar] [CrossRef]
- Shih, W.Y. Bird diversity of greenspace in the densely devel oped city centre of Taipei. Urban Ecosyst. 2018, 21, 379–393. [Google Scholar]
- Richardson, J.; Lees, A.C.; Miller, E.T.; Marsden, S.J. Avian diversity and function across the world´s most population cities. Ecol. Lett. 2023, 26, 1301–1313. [Google Scholar] [CrossRef] [PubMed]
- Jambheker, R.; Suryawanshi, K.; Nagendra, H. Relationship between lake area and distance from the city centre on lake-dependent resident and migratory birds in urban Bangalore, a tropical mega-city in southern India. J. Urban Ecol. 2021, 7, juab028. [Google Scholar] [CrossRef]
- Basile, M.; Storch, I.; Mikusiński, G. Abundance, species richness and diversity of forest bird assemblages—The relative importance of habitat structures and landscape context. Ecol. Indic. 2021, 133, 108402. [Google Scholar] [CrossRef]
- Ayala-Pérez, V.; Arce, N.; Carmona, R. Distribución espacio-temporal de aves acuáticas invernantes en la Ciénega de Tláhuac, planicie lacustre de Chalco, México. Rev. Mex. Biodiv 2013, 84, 327–337. [Google Scholar] [CrossRef]
- Berumen-Solórzano, A.; Maimone, M.R.; Villordo, J.A.; Olivera, C.I.; González-Oreja, J.A. Cambios temporales de la avifauna acuática en el sitio Ramsar “Presa de Valsequillo”, Puebla, México. Huitzil 2017, 18, 202–211. [Google Scholar] [CrossRef]
- Blasio-Quintana, C.; Pineda-López, R. Diversidad de aves en ambientes antrópicos en una localidad del semidesierto del centro de México. Huitzil 2020, 21, e572. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, G.; Ma, H.; Wu, Y.; Zhang, W.; Zhang, Y.; Li, C.; de Boer, W.F. Bird communities‘ responses to human modified landscapes in the southern Anhui Mountainous Area. Avian Res. 2022, 13, 100006. [Google Scholar] [CrossRef]
- Zhai, Z.; Liu, S.; Li, Z.; Ma, R.; Ge, X.; Feng, H.; Shi, Y.; Gu, C. The spatiotemporal distribution patterns and impact factors of bird species richness: A case study of urban built-up areas in Beijing, China. Ecol. Ind. 2024, 169, 112847. [Google Scholar] [CrossRef]
- Ikin, K.; Knight, E.; Lindenmayer, D.B.; Fischer, J.; Manning, A.D. The influence of native versus exotic streetscape vegetation on the spatial distribution of bird in suburbs and reserves. Divers. Distrib. 2013, 19, 294–306. [Google Scholar] [CrossRef]
- Tu, H.M.; Fan, M.W.; Ko, J.C.-J. Different habitat types affect bird richness and evenness. Sci. Rep. 2020, 10, 1221. [Google Scholar] [CrossRef]
- Kang, W.; Minor, E.S.; Park, C.-R.; Lee, D. Effects of habitat structure, human disturbance, and habitat connectivity on urban forest bird communities. Urban Ecosyst. 2015, 18, 857–870. [Google Scholar] [CrossRef]
- Cayetano-Rosas, H.; Ramírez, M.; Gómez-Garduño, J.O.; Piñón, N.; Bautista-Trejo, R.; Valverde, J.G.; Ramírez-Albores, J.E. Composición espacial y temporal de aves acuáticas y rapaces en humedales del centro de México. Cuad. de Investig. UNED 2023, 23, e4382. [Google Scholar] [CrossRef]
- Dvořáková, D.; Šipoš, J.; Suchomel, J. Impact of agricultural landscape structure on the patterns of bird species diversity at a regional scale. Avian Res. 2023, 14, 100147. [Google Scholar] [CrossRef]
- Pescador, M.; Díaz, S.; Peris, S. Abundances of waterbird species on lakes in Argentine Patagonia as a function of season, lake size and the presence of mink. Hydrobiologia 2012, 697, 111. [Google Scholar] [CrossRef]
- Xu, W.; Yu, J.; Huang, P.; Zheng, D.; Lin, Y.; Huang, Z.; Zhao, Y.; Dong, J.; Zhu, Z.; Fu, W. Relationship between Vegetation Habitats and Bird Communities in Urban Mountain Parks. Animals 2022, 12, 2470. [Google Scholar] [CrossRef]
- Alvarez-Alvarez, E.A.; Almazán-Núñez, R.C.; Corcuera, P.; González-García, F.; Brito-Millán, M.; Alvarado-Castro, V.M. Land use cover changes the bird distribution and functional groups at the local and landscape level in a Mexican shaded-coffee agroforestry system. Agric. Ecosyst. Environ. 2022, 330, 107882. [Google Scholar] [CrossRef]
- Mugatha, S.M.; Ogutu, J.O.; Piepho, H.-P.; Maitima, J.M. Bird species richness and diversity responses to land use change in the Lake Victoria Basin, Kenya. Sci. Rep. 2024, 14, 1711. [Google Scholar] [CrossRef]
- Ortega-Álvarez, R.; MacGregor-Fors, I. Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landsc. Urban Plan. 2009, 90, 189–195. [Google Scholar] [CrossRef]
- Muñoz-Sáez, A.; Pérez-Quezada, J.F.; Estades, C.F. Agricultural landscapes as hábitat for birds in central Chile. Rev. Chil. Hist. Nat. 2017, 90, 3. [Google Scholar] [CrossRef]
- Robinson RA, Wilson JD, Crick HQP The importance of arable habitats for farmland birds in grassland landscapes. J. Appl. Ecol. 2001, 38, 1059–1069.
- Thompson, R.; Tamayo, M.; Singurŏsson, S. Urban bird diver sity: Does abundance and richness vary unexpectedly with green space attributes? J. Urban Ecol. 2022, 8, 017. [Google Scholar]
- MacGregor-Fors, I.; Morales-Pérez, L.; Schondube, J.E. Does size really matter? Species-area relationships in human settlements. Divers. Distrib. 2011, 17, 112–121. [Google Scholar] [CrossRef]
- MacGregor-Fors, I.; Ortega-Álvarez, R. Fading from the forest: Bird community shifts related to urban park site-specific and landscape traits. Urban For. Urban Green 2011, 10, 239–243. [Google Scholar] [CrossRef]
- Pal, M.; Pop, P.; Mahapatra, A.; Bhagat, R.; Hore, U. Diversity and structure of bird assemblages along urban-rural gradient in Kolkata, India. Urban For. Urban Green 2019, 38, 84–96. [Google Scholar] [CrossRef]
- Oliver, A.J.; Hong-Wa, C.; Devonshire, J.; Olea, K.R.; Rivas, G.F.; Gahl, M.K. Avifauna richness enhanced in large, isolated urban parks. Landsc. Urban Plan. 2011, 102, 215–225. [Google Scholar] [CrossRef]
- Barbosa, K.V.C.; Rodewald, A.D.; Ribeiro, M.C.; Jahn, A.E. Noise level and water distance drive resident and migratory bird species richness within a Neotropical megacity. Landsc. Urban Plan. 2020, 197, 103769. [Google Scholar] [CrossRef]
- da Silva, B.F.; Pena, J.C.; Viana-Junior, A.B.; Vergne, M.; Pizo, M.A. Noise and tree species richness modulate the bird community inhabiting small public urban green spaces of a Neotropical city. Urban Ecosyst. 2020, 24, 71–81. [Google Scholar] [CrossRef]
- Matthies, S.A.; Rüter, S.; Schearschmidt, F.; Prasse, R. Determi nants of species richness within and across taxonomic groups in urban green spaces. Urban Ecosyst. 2017, 20, 897–909. [Google Scholar] [CrossRef]
- Holtmann, L.; Philipp, K.; Becke, C.; Fartmann, T. Effects of habitat and landscape quality on amphibian assemblages of urban stormwater ponds. Urban Ecosyst. 2017, 20, 1249–1259. [Google Scholar] [CrossRef]
- Dyson, K. Conserving native trees increases native bird diversity and community composition on commercial office developments. J. Urban Ecol. 2020, 6, juaa033. [Google Scholar] [CrossRef]
Site | Coordinates | Elevation (m) | Land Use Coverage | Microhabitat Structure |
---|---|---|---|---|
Guadalupe Lake | 19°37′ N, 99°15′ W | 2305 | Urban and semi-urban | Wetland, native and non-native vegetation, agricultural areas, urban areas |
Zumpango Lagoon | 19°46′ N, 99°08′ W | 2250 | Urban, semi-urban and rural | Wetland, native and non-native vegetation, induced grasslands, agricultural areas, urban areas |
Nabor Carrillo Lake | 19°28′ N, 98°58′ W | 2235 | Semi-urban and rural | Wetland, native and non-native vegetation, agricultural areas, natural grasslands, and xeric scrub |
Sierra Hermosa Ecological, Tourist and Recreational State Park | 19°42′ N, 98°59′ W | 2245 | Urban, semi-urban, and rural | Wetland, urban areas, native and non-native vegetation, native and induced grasslands, agricultural areas |
Cerro de Paula and surrounding areas | 19°47′ N, 98°55′ W | 2495 | Semi-urban and rural | Agricultural areas, native and non-native vegetation, natural grasslands, xeric scrub |
Total | Guadalupe Lake | Zumpango Lagoon | Nabor Carrillo Lake | Sierra Hermosa Ecological, Tourist and Recreational State Park | Cerro de Paula | |
---|---|---|---|---|---|---|
Species richness | 290 | 197 | 209 | 193 | 199 | 146 |
Species richness (monthly average) | 138.8 | 73.6 | 87.2 | 74.3 | 77.7 | 50.9 |
Chao 2 | 300 (96.6%) | 200 (98.5%) | 217 (96.3%) | 201 (96.0%) | 219 (90.4%) | 166 (87.9%) |
Jakk 1 | 305 (95.0%) | 205 (96.1%) | 229 (91.2%) | 209 (92.3%) | 228 (87.8%) | 170 (85.9%) |
Abundance (monthly average) | 5686.5 | 4760.1 | 11,408.1 | 8263.9 | 2669.0 | 806.4 |
H’ | 3.12 | 3.07 | 3.22 | 3.04 | 3.19 | 2.99 |
H’ max | 5.67 | 5.28 | 5.34 | 5.26 | 5.29 | 4.98 |
J’ | 0.79 | 0.76 | 0.76 | 0.75 | 0.78 | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Albores, J.E. Avian Community Structure and Spatial Distribution in Anthropogenic Landscapes in Central Mexico. Birds 2025, 6, 18. https://doi.org/10.3390/birds6020018
Ramírez-Albores JE. Avian Community Structure and Spatial Distribution in Anthropogenic Landscapes in Central Mexico. Birds. 2025; 6(2):18. https://doi.org/10.3390/birds6020018
Chicago/Turabian StyleRamírez-Albores, Jorge Enrique. 2025. "Avian Community Structure and Spatial Distribution in Anthropogenic Landscapes in Central Mexico" Birds 6, no. 2: 18. https://doi.org/10.3390/birds6020018
APA StyleRamírez-Albores, J. E. (2025). Avian Community Structure and Spatial Distribution in Anthropogenic Landscapes in Central Mexico. Birds, 6(2), 18. https://doi.org/10.3390/birds6020018