Spatiotemporal Dynamics of Domestic Tourist Flows and Tourism Industry Agglomeration in the Yangtze River Delta, China
Abstract
1. Introduction
- How did inter-city disparities in tourist volumes and spatial distribution patterns in the YRD evolve before and after the emergence of COVID-19?
- How has the agglomeration of the tourism industry in cities within the YRD developed in the pre- and post-pandemic periods, and what variations in tourism resilience emerged across different city types in response to pandemic-induced disruptions?
- Drawing on the analysis of spatiotemporal variations and agglomeration characteristics, what differentiated policy measures should be implemented in the YRD to address regional development imbalances?
2. Literature Review and Hypothesis
2.1. Tourism Development
2.2. Spatial and Temporal Disparities in Tourism Development
2.3. The Tourism Development Disparities and the Impact of the COVID-19 Pandemic
2.4. The Sustainable Development of Tourism
2.5. Theoretical Foundations
2.6. Hypothesis
3. Data Collection and Methodology
3.1. Research Region
3.2. Sources of Data
3.3. Research Methods
3.3.1. Standard Deviation (SD)
3.3.2. Coefficient of Variation (CV)
3.3.3. Standard Deviation Ellipse (SDE)
3.3.4. Location Entropy (LE)
4. Spatiotemporal Analysis of Domestic Tourist Flows
4.1. The Disparities of the Domestic Tourist Numbers Between the Provinces
4.1.1. The 2016–2019 Pre-Pandemic Period
4.1.2. The 2020–2022 Pandemic Period
4.2. The Temporal Evolution of Domestic Tourism Disparities
4.2.1. Trends Before COVID-19 Pandemic (2016–2019)
4.2.2. Trends During COVID-19 Period (2020–2022)
4.3. Comparative Analysis of Domestic Tourist Flows Spatial Distribution
4.3.1. Spatial Characteristics of Domestic Tourist Flows
- Spatial Distribution in 2016
- Spatial Distribution in 2019
- Spatial Distribution in 2022
4.3.2. Standard Deviation Ellipse of Domestic Tourist Flows
4.4. Spatiotemporal Analysis of Tourism Industry Concentration
4.4.1. Temporal Characterization of Tourism Industry Concentration
- Pre-COVID Stability (2016–2019)
- Impact of COVID-19 (2020)
- Post-Pandemic Recovery Dynamics (2021–2022)
4.4.2. Spatial Distribution of Tourism Industry Concentration
- YRD Establishment Period (2016)
- Peak Tourism Economy (2019)
- Final Year of the Epidemic (2022)
5. Discussion and Conclusions
5.1. Discussions
5.1.1. New Empirical Insights into Dynamics of Domestic Tourist Flows Under Crisis Conditions
5.1.2. Transformation of the Core–Periphery Structure and Tourism Recovery Mechanisms
5.1.3. Insights from Changes in Domestic Tourism Agglomeration
5.1.4. Insights from the Application of an Integrated Analytical Framework
5.2. Conclusions
5.3. Recommendations and Theoretical Contributions
5.3.1. Develop High-Quality Distinctive Tourist Attractions
5.3.2. Promote Economic Diversification in Tourism-Reliant Cities
5.3.3. Enhance Infrastructure and Support in Less-Developed Areas
5.3.4. Strengthen Regional Coordination Mechanisms
6. Limitation and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agiropoulos, C., Chen, J. M., Galanos, G., & Poufinas, T. (2024). Exploring regional determinants of tourism success in the eurozone: An unsupervised machine learning approach. Engineering Proceedings, 68(1), 53. [Google Scholar] [CrossRef]
- Agius, K., & Chaperon, S. (2023). The dependency-autonomy paradox: A core-periphery analysis of tourism development in Mediterranean archipelagos. International Journal of Tourism Research, 25(5), 506–516. [Google Scholar] [CrossRef]
- Ahmed, S. (2025). Tourism today: Trends, challenges, and opportunities. Journal of Educational Studies, 3(1), 42–56. [Google Scholar] [CrossRef]
- Alabi, O., & Bukola, T. (2023). Introduction to descriptive statistics. In Recent advances in biostatistics. IntechOpen. [Google Scholar] [CrossRef]
- Bai, Y., Wang, M., Xu, X., Li, J., & Cheng, X. (2025). Analysis of population flow changes in red tourism counties of China before and after the COVID-19 pandemic based on mobile signaling data. Sustainability, 17(1), 148. [Google Scholar] [CrossRef]
- Baloch, Q. B., Shah, S. N., Iqbal, N., Sheeraz, M., Asadullah, M., Mahar, S., & Khan, A. U. (2023). Impact of tourism development upon environmental sustainability: A suggested framework for sustainable ecotourism. Environmental Science and Pollution Research, 30(3), 5917–5930. [Google Scholar] [CrossRef]
- Boto-García, D., & Pérez, L. (2023). The effect of high-speed rail connectivity and accessibility on tourism seasonality. Journal of Transport Geography, 107, 103546. [Google Scholar] [CrossRef]
- Buhalis, D., O’Connor, P., & Leung, R. (2023). Smart hospitality: From smart cities and smart tourism towards agile business ecosystems in networked destinations. International Journal of Contemporary Hospitality Management, 35(1), 369–393. [Google Scholar] [CrossRef]
- Castells, M. (2020). Space of flows, space of places: Materials for a theory of urbanism in the information age. In The city reader (pp. 240–251). Routledge. [Google Scholar]
- Chen, M., Yang, F., Sun, J., Deng, L., & Luo, J. (2024). Spatiotemporal differentiation and driving mechanisms of high-level grade A tourist attractions in the Yangtze River Delta city cluster. PLoS ONE, 19(5), e0300181. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q., Bi, Y., & Li, J. (2021). Spatial disparity and influencing factors of coupling coordination development of economy–environment–tourism–traffic: A case study in the middle reaches of yangtze river urban agglomerations. International Journal of Environmental Research and Public Health, 18(15), 7947. [Google Scholar] [CrossRef]
- China-Government. (2019). Outline of the plan for the integrated development of the Yangtze River Delta region. State Council (PRC). Available online: https://www.gov.cn/zhengce/2019-12/01/content_5457442.htm (accessed on 13 May 2025).
- Daniels, M. J. (2007). Central place theory and sport tourism impacts. Annals of Tourism Research, 34(2), 332–347. [Google Scholar] [CrossRef]
- Ding, H., Wang, J., Liao, W., Liang, T., & Dai, H. (2021). Site selection of self-driving and recreational vehicle camps in China: An investigation using analytic hierarchy process and entropy. Journal of Traffic and Transportation Engineering (English Edition), 8(5), 762–777. [Google Scholar] [CrossRef]
- Feng, X., Pan, C., & Xu, F. (2024). The spatial structure and influencing factors of the tourism economic network in the Yangtze River Delta urban agglomeration. Tourism and Hospitality, 5(1), 60–79. [Google Scholar] [CrossRef]
- Feng, Y., Hu, J., Afshan, S., Irfan, M., Hu, M., & Abbas, S. (2023). Bridging resource disparities for sustainable development: A comparative analysis of resource-rich and resource-scarce countries. Resources Policy, 85, 103981. [Google Scholar] [CrossRef]
- Friedmann, J. (1966). Regional development policy: A case study of Venezuela. MIT Press. [Google Scholar]
- Gießmann, S. (2017). Drawing the social: Jacob Levy Moreno, sociometry, and the rise of network diagrammatics. Universität Siegen. [Google Scholar]
- Goodbody, T. R., Coops, N. C., Srivastava, V., Parsons, B., Kearney, S. P., Rickbeil, G. J., & Stenhouse, G. B. (2021). Mapping recreation and tourism use across grizzly bear recovery areas using social network data and maximum entropy modelling. Ecological Modelling, 440, 109377. [Google Scholar] [CrossRef]
- Gui, R., Song, W., Lv, J., Lu, Y., Liu, H., Feng, T., & Linghu, S. (2025). Digital elevation model-driven river channel boundary monitoring using the natural breaks (Jenks) method. Remote Sensing, 17(6), 1092. [Google Scholar] [CrossRef]
- Gullu, K., & Yilmaz, M. (2020). Determination of destination competitiveness of the selected Mediterranean destinations by entropy based EDAS method. Erciyes Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (48), 486–509. Available online: https://dergipark.org.tr/en/pub/erusosbilder/issue/55878/741433 (accessed on 1 May 2025).
- Hall, C. M. (2011). Policy learning and policy failure in sustainable tourism governance: From first-and second-order to third-order change? Journal of Sustainable Tourism, 19, 649–671. [Google Scholar] [CrossRef]
- Hall, C. M. (2013). A typology of governance and its implications for tourism policy analysis. In Tourism governance (pp. 27–47). Routledge. [Google Scholar]
- He, H., Tuo, S., Lei, K., & Gao, A. (2024). Assessing quality tourism development in China: An analysis based on the degree of mismatch and its influencing factors. Environment, Development and Sustainability, 26(4), 9525–9552. [Google Scholar] [CrossRef]
- Iamtrakul, P., Chayphong, S., Seo, D., & Trinh, T. A. (2025). Geo-spatial analysis of transit planning for sustainable tourism development in Bangkok, Thailand. Journal of Asian Architecture and Building Engineering, 24(4), 3018–3029. [Google Scholar] [CrossRef]
- Janjua, L. R., Muhammad, F., Sukjai, P., Rehman, A., & Yu, Z. (2021). Impact of COVID-19 pandemic on thailand economy and tourist industry: An empirical forecasting using ARIMA. Brazilian Journal of Operations & Production Management, 18(2), 1–13. [Google Scholar] [CrossRef]
- Ji, J., & Wang, D. (2022). Regional differences, dynamic evolution, and driving factors of tourism development in Chinese coastal cities. Ocean & Coastal Management, 226, 106262. [Google Scholar] [CrossRef]
- Jiang, L., Chen, X., Pu, L., & Xue, H. (2025). Spatio-temporal evolution characteristics of tourism ecological resilience in China. Land, 14(5), 966. [Google Scholar] [CrossRef]
- Jones, S. (2012). Sustainable heritage tourism planning in Ethiopia: An assessment framework. Simon Fraser University. [Google Scholar]
- Klimczuk, A., & Klimczuk-Kochańska, M. (2023). Core-periphery model. In The Palgrave encyclopedia of global security studies (pp. 239–245). Springer. [Google Scholar]
- Kronfeld-Schor, N., Stevenson, T. J., Nickbakhsh, S., Schernhammer, E. S., Dopico, X. C., Dayan, T., Martinez, M., & Helm, B. (2021). Drivers of infectious disease seasonality: Potential implications for COVID-19. Journal of Biological Rhythms, 36(1), 35–54. [Google Scholar] [CrossRef]
- Krugman, P. (1991). Increasing returns and economic geography. Journal of Political Economy, 99(3), 483–499. [Google Scholar] [CrossRef]
- Krugman, P. R. (1997). Development, geography, and economic theory (Vol. 6). MIT Press. [Google Scholar]
- Lessmann, C. (2014). Spatial inequality and development—Is there an inverted-U relationship? Journal of Development Economics, 106, 35–51. [Google Scholar] [CrossRef]
- Li, H., Li, M., Zou, H., Zhang, Y., & Cao, J. (2023). Urban sensory map: How do tourists “sense” a destination spatially? Tourism Management, 97, 104723. [Google Scholar] [CrossRef]
- Ling, H., & Qiu, X. (2024). Asymmetric modeling of regional tourism economic disparity in China. PLoS ONE, 19(3), e0299459. [Google Scholar] [CrossRef]
- Liu, Z., Lu, C., Mao, J., Sun, D., Li, H., & Lu, C. (2021). Spatial–temporal heterogeneity and the related influencing factors of tourism efficiency in China. Sustainability, 13(11), 5825. [Google Scholar] [CrossRef]
- Lu, Y. (2024). Transforming China’s tourism industry: The impact of industrial integration on quality, performance, and productivity. Journal of the Knowledge Economy, 15(4), 18116–18153. [Google Scholar] [CrossRef]
- Ma, X., Ma, R., Ma, Z., Wang, J., Yang, Z., Wang, C., & Han, F. (2024). Assessing the reactions of tourist markets to reinstated travel restrictions in the destination during the post-COVID-19 phase. Scientific Reports, 14(1), 15495. [Google Scholar] [CrossRef] [PubMed]
- Ma, X., Yang, Z., & Zheng, J. (2022). Analysis of spatial patterns and driving factors of provincial tourism demand in China. Scientific Reports, 12(1), 2260. [Google Scholar] [CrossRef]
- McKercher, B. (2021). The periphery as a tourism market? Tourism Recreation Research, 49(2), 302–311. [Google Scholar] [CrossRef]
- Milon, M. N. U. (2024). Poverty alleviation through tourism development in Bangladesh: Theoretical perspectives and empirical evidence. Educational Administration: Theory and Practice, 30(5), 10050–10064. [Google Scholar] [CrossRef]
- Pan, H., Yang, Y., Zhang, W., & Xu, M. (2024). Research on coupling coordination of China’s urban resilience and tourism economy—Taking Yangtze River Delta city cluster as an example. Sustainability, 16(3), 1247. [Google Scholar] [CrossRef]
- Parvaneh Safa, R., Yasouri, M., & Hesam, M. (2021). Effects of tourism on sustainable rural livelihoods (case study: Saravan, Rasht County, Iran). Journal of Research and Rural Planning, 10(3), 1–19. [Google Scholar] [CrossRef]
- Perroux, F. (1955). Note sur la notion de” pôle de croissance”. Economie Appliquée, 8(1), 307–320. [Google Scholar] [CrossRef]
- Perroux, F. (1970). Note on the concept of growth poles. In Regional economics: Theory and practice (Vol. 22, pp. 93–103). Free Press. [Google Scholar]
- Prayitno, G., Auliah, A., Ari, I. R. D., Effendi, A., Hayat, A., Delisa, A., Siankwilimba, E., & Hiddlestone-Mumford, J. (2024). Social capital for sustainable tourism development in Indonesia. Cogent Social Sciences, 10(1), 2293310. [Google Scholar] [CrossRef]
- Rakrak, M. (2025). Exploring variability in data: The role of range, variance, and standard deviation. International Journal of Multidisciplinary Research and Analysis, 8(3), 1327–1331. [Google Scholar] [CrossRef]
- Ran, Q., Wang, X., Wang, D., & Yan, H. (2023). Inbound tourism economy for coastal areas of China: Differences and influencing factors. Journal of Coastal Research, 39(4), 750–762. [Google Scholar] [CrossRef]
- Scott, N., Baggio, R., & Cooper, C. (2008). Network analysis and tourism: From theory to practice. Channel View Publications. [Google Scholar]
- Seraj, M., Ike, O. C., & Ozdeser, H. (2025). The contribution of tourism on GDP growth and sustainable tourism development in Africa. Future Business Journal, 11(1), 115. [Google Scholar] [CrossRef]
- Shanghai Municipal Bureau of Statistics. (2024). Statistical yearbook 2017–2023. Available online: https://tjj.sh.gov.cn/sjfb/index.html (accessed on 13 May 2025).
- Sigala, M. (2020). Tourism and COVID-19: Impacts and implications for advancing and resetting industry and research. Journal of Business Research, 117, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Song, Z. (2025). Research on assessing comprehensive competitiveness of tourist destinations within cities, based on field theory and competitiveness theory. Sustainability, 17(1), 90. [Google Scholar] [CrossRef]
- Stojanović, T., Trišić, I., Brđanin, E., Štetić, S., Nechita, F., & Candrea, A. N. (2024). Natural and sociocultural values of a tourism destination in the function of sustainable tourism development—An example of a protected area. Sustainability, 16(2), 759. [Google Scholar] [CrossRef]
- Sun, Y.-Y., Li, M., Lenzen, M., Malik, A., & Pomponi, F. (2022). Tourism, job vulnerability and income inequality during the COVID-19 pandemic: A global perspective. Annals of Tourism Research Empirical Insights, 3(1), 100046. [Google Scholar] [CrossRef]
- Tan, T., Chen, Z., Zha, J., He, L., & Li, X. (2024). Tourism productivity: Is there any spatial correlation among various regions? The case of China from a network analysis perspective. Journal of Hospitality and Tourism Management, 58, 256–268. [Google Scholar] [CrossRef]
- Tan, T., Zha, J., Tang, J., Ma, R., & Li, W. (2022). Spatial-temporal disparities in the impact of the coronavirus disease 2019 on domestic tourism demand: A study of Emeishan National Park in Mainland China. Journal of Vacation Marketing, 28(3), 261–284. [Google Scholar] [CrossRef]
- Tleuberdinova, A., Salauatova, D., & Pratt, S. (2024). Assessing tourism destination competitiveness: The case of Kazakhstan. Journal of Policy Research in Tourism, Leisure and Events, 16(2), 265–283. [Google Scholar] [CrossRef]
- Wang, N., & Weng, G. (2025). Spatiotemporal evolution of and regional differences in consumer disputes in the tourism system: Empirical evidence from the Yangtze River economic belt, China. Systems, 13(6), 473. [Google Scholar] [CrossRef]
- Wang, X., Sun, S., Guo, Y., & Xiao, T. (2024). An analysis of the driving forces behind the Yangtze River Delta (YRD) region’s high-quality growth in the digital creative industries. PLoS ONE, 19(11), e0313647. [Google Scholar] [CrossRef] [PubMed]
- Wickramasinghe, K., & Naranpanawa, A. (2023). Tourism and COVID-19: An economy-wide assessment. Journal of Hospitality and Tourism Management, 55, 131–138. [Google Scholar] [CrossRef]
- Williamson, J. G. (1965). Regional inequality and the process of national development: A description of the patterns. Economic Development and Cultural Change, 13(4), 1–84. [Google Scholar] [CrossRef]
- Wu, Y., Zhang, S., Koko, A. F., & Han, Z. (2025). Spatio-temporal correlation between growth of science and technology innovation parks (STIPs) and urban development in Yangtze Delta region (YDR), China using remote sensing and GIS techniques. Geocarto International, 40(1), 2453617. [Google Scholar] [CrossRef]
- Xu, X. (2023). Multi-annual prefecture and city administrative boundaries data in China. Resource and Environmental Science Data Registration and Publication System. [Google Scholar] [CrossRef]
- Yang, S., Jiang, Y., Wang, Z., Yan, B., & Wang, K. (2025). Exploring the influence of regional knowledge dynamics on the competitiveness of tourism in China’s Provinces. Journal of the Knowledge Economy, 16(1), 1975–2015. [Google Scholar] [CrossRef]
- Ye, L., Wang, G., & Meng, Y. (2024). Multidimensional measurement and regulation of regional coordinated and balanced development levels: Using the Yangtze River Delta region in China as an example. Sustainability, 16(2), 927. [Google Scholar] [CrossRef]
- Zeng, K., Zhai, Y., Wang, L., & Wang, Y. (2024). Spatio-temporal differentiation of non-grain production of cropland and its influencing factors: Evidence from the Yangtze River economic belt, China. Sustainability, 16(14), 6103. [Google Scholar] [CrossRef]
- Zhang, J., Lu, H., Peng, W., & Zhang, L. (2025). Analyzing carbon emissions and influencing factors in Chengdu-Chongqing urban agglomeration counties. Journal of Environmental Sciences, 151, 640–651. [Google Scholar] [CrossRef]
- Zheng, X., Yang, Z., Zhang, X., Wang, T., Chen, X., & Wang, C. (2023). Spatiotemporal evolution and influencing factors of provincial tourism ecological security in China. Ecological Indicators, 148, 110114. [Google Scholar] [CrossRef]
Region | City Count | Constituent Cities |
---|---|---|
Shanghai City | 1 | Shanghai |
Jiangsu Province | 13 | Nanjing, Wuxi, Xuzhou, Changzhou, Suzhou (J), Nantong, Lianyungang, Huai’an, Yancheng, Yangzhou, Zhenjiang, Taizhou (J), Suqian |
Zhejiang Province | 11 | Hangzhou, Ningbo, Wenzhou, Jiaxing, Huzhou, Shaoxing, Jinhua, Quzhou, Zhoushan, Taizhou (Z), Lishui |
Anhui Province | 16 | Hefei, Wuhu, Bengbu, Huainan, Ma’anshan, Huaibei, Tongling, Anqing, Huangshan, Lu’an, Bozhou, Chuzhou, Fuyang, Suzhou (A), Chizhou, Xuancheng |
Year | Range (mn) | MIN (mn) | MAX (mn) | M (mn) | SD | CV |
---|---|---|---|---|---|---|
2016 | 287.97 | 8.24 | 296.21 | 58.13 | 49.56 | 0.85 |
2017 | 303.68 | 14.77 | 318.45 | 66.69 | 53.87 | 0.81 |
2018 | 323.10 | 16.66 | 339.77 | 74.66 | 58.39 | 0.78 |
2019 | 342.88 | 18.52 | 361.41 | 82.71 | 63.19 | 0.76 |
2020 | 225.90 | 10.16 | 236.06 | 57.97 | 49.09 | 0.85 |
2021 | 281.49 | 12.33 | 293.82 | 49.95 | 46.69 | 0.93 |
2022 | 177.66 | 10.50 | 188.16 | 41.16 | 33.24 | 0.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Q.; Boonchai, P.; Boonlua, S. Spatiotemporal Dynamics of Domestic Tourist Flows and Tourism Industry Agglomeration in the Yangtze River Delta, China. Tour. Hosp. 2025, 6, 204. https://doi.org/10.3390/tourhosp6040204
Xu Q, Boonchai P, Boonlua S. Spatiotemporal Dynamics of Domestic Tourist Flows and Tourism Industry Agglomeration in the Yangtze River Delta, China. Tourism and Hospitality. 2025; 6(4):204. https://doi.org/10.3390/tourhosp6040204
Chicago/Turabian StyleXu, Quanhong, Paranee Boonchai, and Sutana Boonlua. 2025. "Spatiotemporal Dynamics of Domestic Tourist Flows and Tourism Industry Agglomeration in the Yangtze River Delta, China" Tourism and Hospitality 6, no. 4: 204. https://doi.org/10.3390/tourhosp6040204
APA StyleXu, Q., Boonchai, P., & Boonlua, S. (2025). Spatiotemporal Dynamics of Domestic Tourist Flows and Tourism Industry Agglomeration in the Yangtze River Delta, China. Tourism and Hospitality, 6(4), 204. https://doi.org/10.3390/tourhosp6040204