Artificial intelligence is rapidly reshaping skill expectations across media, marketing, and journalism, however, university curricula are not evolving at a comparable speed. To quantify the resulting curriculum–skill gap in communication-related programs, two synchronous corpora were assembled for the period July 2024–June 2025: 66
[...] Read more.
Artificial intelligence is rapidly reshaping skill expectations across media, marketing, and journalism, however, university curricula are not evolving at a comparable speed. To quantify the resulting curriculum–skill gap in communication-related programs, two synchronous corpora were assembled for the period July 2024–June 2025: 66 course descriptions from six leading UK universities and 107 graduate-to-mid-level job advertisements in communications, digital media, advertising, and public relations. Alignment around AI, datafication, and platform governance was assessed through a three-stage natural-language-processing workflow: a dual-tier AI-keyword index, comparative TF–IDF salience, and latent Dirichlet allocation topic modeling with bootstrap uncertainty. Curricula devoted 6.0% of their vocabulary to AI plus data/platform terms, whereas job ads allocated only 2.3% (χ
2 = 314.4,
p < 0.001), indicating a conceptual-critical emphasis on ethics, power, and societal impact in the academy versus an operational focus on SEO, multichannel analytics, and campaign performance in recruitment discourse. Topic modeling corroborated this divergence: universities foregrounded themes labelled “Politics, Power & Governance”, while advertisers concentrated on “Campaign Execution & Performance”. Environmental and social externalities of AI—central to the Special Issue theme—were foregrounded in curricula but remained virtually absent from job advertisements. The findings are interpreted as an extension of technology-biased-skill-change theory to communication disciplines, and it is suggested that studio-based micro-credentials in automation workflows, dashboard visualization, and sustainable AI practice be embedded without relinquishing critical reflexivity, thereby narrowing the curriculum–skill gap and fostering environmentally, socially, and economically responsible media innovation. With respect to the novelty of this research, it constitutes the first large-scale, data-driven corpus analysis that empirically assessed the AI-related curriculum–skill gap in communication disciplines, thereby extending technology-biased-skill-change theory into this field.
Full article