Efficiency and Uncertainty: Understanding Journalists’ Attitudes Toward AI Adoption in Greece
Abstract
1. Introduction
1.1. Actor–Network Theory
1.2. Journalism and Artificial Intelligence
1.3. AI Use in Greek Media
2. Materials and Methods
2.1. Quantitative Data Analysis
2.2. Qualitative Data Analysis
2.3. Research Questions
2.4. Central Question
2.5. Research Hypothesis
2.6. Research Questions in Qualitative Research
3. Results
3.1. Quantitative Analysis
3.2. Qualitative Analysis
3.2.1. Theme 1: AI as a Tool for Journalistic Enhancement
3.2.2. Theme 2: Ethical and Quality Concerns
3.2.3. Theme 3: Threats and Job Security
3.2.4. Theme 4: Journalists’ Emotions About AI
3.2.5. Theme 5: Human vs. AI Roles in Journalism
3.2.6. Theme 6: Journalists’ Perceptions of Audience Shifts and AI’s Role
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| NLG | Natural Language Generation |
| WAN-IFRA | World Association of News Publishers |
References
- Agee, J. (2009). Developing qualitative research questions: A reflective process. International Journal of Qualitative Studies in Education, 22(4), 431–447. [Google Scholar] [CrossRef]
- Beckett, C. (2019, November 18). New powers, new responsibilities. A global survey of journalism and artificial intelligence. Polis, London School of Economics and Political Science. Available online: https://blogs.lse.ac.uk/polis/2019/11/18/new-powers-new-responsibilities/ (accessed on 20 July 2025).
- Belair-Gagnon, V., & Holton, A. E. (2018). Boundary work, interloper media, and analytics in newsrooms. Digital Journalism, 6(4), 492–508. [Google Scholar] [CrossRef]
- Broussard, M. (2014). Artificial intelligence for investigative reporting: Using an expert system to enhance journalists’ ability to discover original public affairs stories. Digital Journalism, 3(6), 814–831. [Google Scholar] [CrossRef]
- Broussard, M., Diakopoulos, N., Guzman, A. L., Abebe, R., Dupagne, M., & Chuan, C. H. (2019). Artificial intelligence and journalism. Journalism & Mass Communication Quarterly, 96(3), 673–695. [Google Scholar] [CrossRef]
- Castleberry, A., & Nolen, A. (2018). Thematic analysis of qualitative research data: Is it as easy as it sounds? Currents in Pharmacy Teaching and Learning, 10(6), 807–815. [Google Scholar] [CrossRef]
- Clark, T., Foster, L., Bryman, A., & Sloan, L. (2021). Bryman’s social research methods. Oxford university press. [Google Scholar]
- Crawford, T. (2020, September 28). Actor-network theory. Oxford research encyclopedia of literature. Available online: https://oxfordre.com/literature/view/10.1093/acrefore/9780190201098.001.0001/acrefore-9780190201098-e-965 (accessed on 30 July 2025).
- Creswell, J. W., Plano Clark, V. L., Gutmann, M. L., & Hanson, W. E. (2003). Advanced mixed methods research designs. Handbook of mixed methods in social and behavioral research, 209(240), 209–240. [Google Scholar]
- Creswell, J. W., & Poth, C. N. (2016). Qualitative inquiry and research design: Choosing among five approaches. Sage Publications. [Google Scholar]
- Danzon-Chambaud, S., & Cornia, A. (2023). Changing or reinforcing the “rules of the game”: A field theory perspective on the impacts of automated journalism on media practitioners. Journalism Practice, 17(2), 174–188. [Google Scholar] [CrossRef]
- Datajournalism.com. (2021). The state of data journalism 2021. Available online: https://datajournalism.com/survey/2021/ (accessed on 10 July 2023).
- Datajournalism.com. (2022). The state of data journalism 2022. Available online: https://datajournalism.com/survey/2022/ (accessed on 10 July 2023).
- de-Lima-Santos, M. F., & Ceron, W. (2021). Artificial intelligence in news media: Current perceptions and future outlook. Journalism and Media, 3(1), 13–26. [Google Scholar] [CrossRef]
- Deuze, M., & Beckett, C. (2022). Imagination, algorithms and news: Developing AI literacy for journalism. Digital Journalism, 10(10), 1913–1918. [Google Scholar] [CrossRef]
- Diakopoulos, N. (2013, December). Algorithmic accountability reporting: On the investigation of black boxes. Tow Center for Digital Journalism. Available online: https://academiccommons.columbia.edu/doi/10.7916/D8ZK5TW2 (accessed on 20 July 2025).
- Diakopoulos, N. (2019). Automating the news: How algorithms are rewriting the media. Harvard University Press. [Google Scholar]
- Dierickx, L., Opdahl, A. L., Khan, S. A., Lindén, C. G., & Guerrero Rojas, D. C. (2024). A data-centric approach for ethical and trustworthy AI in journalism. Ethics and Information Technology, 26(4), 64. [Google Scholar] [CrossRef]
- Domingo, D., & Wiard, V. (2016). News networks. In The SAGE handbook of digital journalism (pp. 397–409). SAGE Publications Ltd. [Google Scholar] [CrossRef]
- Dörr, K. N. (2016). Mapping the field of algorithmic journalism. Digital Journalism, 4(6), 700–722. [Google Scholar] [CrossRef]
- Dörr, K. N., & Hollnbuchner, K. (2017). Ethical challenges of algorithmic journalism. Digital Journalism, 5(4), 404–419. [Google Scholar] [CrossRef]
- Fernández-Sánchez, A., Lorenzo-Castiñeiras, J. J., & Sánchez-Bello, A. (2024). Navigating the future of pedagogy: The integration of AI tools in developing educational assessment rubrics. European Journal of Education, 60(1), e12826. [Google Scholar] [CrossRef]
- Gignac, G. E., & Szodorai, E. T. (2016). Effect size guidelines for individual differences researchers. Personality and Individual Differences, 102, 74–78. [Google Scholar] [CrossRef]
- Hemmler, V. L., Kenney, A. W., Langley, S. D., Callahan, C. M., Gubbins, E. J., & Holder, S. (2022). Beyond a coefficient: An interactive process for achieving inter-rater consistency in qualitative coding. Qualitative Research, 22(2), 194–219. [Google Scholar] [CrossRef]
- Ivankova, N. V., Creswell, J. W., & Stick, S. L. (2006). Using mixed-methods sequential explanatory design: From theory to practice. Field Methods, 18(1), 3–20. [Google Scholar] [CrossRef]
- Kalfeli, P., & Angeli, C. (2025). The intersection of ai, ethics, and journalism: Greek journalists’ and academics’ perspectives. Societies, 15(2), 22. [Google Scholar] [CrossRef]
- Karadimitriou, A. (2020). Journalistic professionalism in Greece: Between chronic and acute crises. In The Emerald handbook of digital media in Greece (pp. 159–178). Emerald Publishing Limited. [Google Scholar] [CrossRef]
- Kaur, P., Stoltzfus, J., & Yellapu, V. (2018). Descriptive statistics. International Journal of Academic Medicine, 4(1), 60. [Google Scholar] [CrossRef]
- Kostarella, I., Saridou, T., Dimoulas, C., & Veglis, A. (2025). Can Artificial Intelligence (AI) Spring an Oasis to the Local News Deserts? Journalism Practice, 1–21. [Google Scholar] [CrossRef]
- Kotenidis, E., & Veglis, A. (2021). Algorithmic journalism—Current applications and future perspectives. Journalism and Media, 2(2), 244–257. [Google Scholar] [CrossRef]
- Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Harvard University Press. [Google Scholar]
- Latour, B. (2005). Reassembling the social: An introduction to actor-network theory. Oxford University Press. [Google Scholar]
- Law, J. (1999). After ANT: Topology, naming and complexity. The Sociological Review, 47(S1), 1–14. [Google Scholar] [CrossRef]
- Lewis, S. C., Guzman, A. L., & Schmidt, T. R. (2019). Automation, journalism, and human–machine communication: Rethinking roles and relationships of humans and machines in news. Digital Journalism, 7(4), 409–427. [Google Scholar] [CrossRef]
- Lewis, S. C., & Usher, N. (2016). Trading zones, boundary objects, and the pursuit of news innovation: A case study of journalists and programmers. Convergence, 22(5), 543–560. [Google Scholar] [CrossRef]
- Lewis, S. C., & Westlund, O. (2015). Actors, actants, audiences, and activities in cross-media news work: A matrix and a research agenda. Digital Journalism, 3(1), 19–37. [Google Scholar] [CrossRef]
- Lindén, C. G. (2020). What makes a reporter human? Questions de Communication, 37(1), 337–351. [Google Scholar] [CrossRef]
- Lindén, C.-G., Tuulonen, H., Bäck, A., Diakopoulos, N., Granroth-Wilding, M., Haapanen, L., Leppänen, L., Melin, M., Moring, T., Munezero, M., Sirén-Heikel, S., Södergård, C., & Toivonen, H. (2019). News automation: The rewards, risks and realities of “machine journalism.”. Available online: https://cris.vtt.fi/en/publications/news-automation-the-rewards-risks-and-realities-of-machine-journl/ (accessed on 10 June 2025).
- Min, S. J., & Fink, K. (2021). Keeping up with the technologies: Distressed journalistic labor in the pursuit of “shiny” technologies. Journalism Studies, 22(14), 1987–2004. [Google Scholar] [CrossRef]
- Napoli, P. M. (2014). Automated media: An institutional theory perspective on algorithmic media production and consumption. Communication Theory, 24(3), 340–360. [Google Scholar] [CrossRef]
- Nawararthne, D., & Storni, C. (2023). Black-boxing journalistic chains, an actor-network theory inquiry into journalistic truth. Journalism Studies, 24(13), 1629–1650. [Google Scholar] [CrossRef]
- Newman, N. (2024). Journalism, media, and technology trends and predictions 2024. The Reuters Institute for the Study of Journalism. Available online: https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2024-01/Newman%20-%20Trends%20and%20Predictions%202024%20FINAL.pdf (accessed on 10 June 2025).
- Noain-Sánchez, A. (2022). Addressing the impact of artificial intelligence on journalism: The perception of experts, journalists and academics. Communication & Society, 35(3), 105–121. [Google Scholar] [CrossRef]
- Palla, Z., & Kostarella, I. (2025). Journalists’ perspectives on the role of artificial intelligence in enhancing quality journalism in Greek local media. Societies, 15(4), 89. [Google Scholar] [CrossRef]
- Papathanassopoulos, S., Karadimitriou, A., Kostopoulos, C., & Archontaki, I. (2021). Greece: Media concentration and independent journalism between austerity and digital disruption. In J. Trappel, & T. Tomaz (Eds.), The media for democracy monitor 2021: How leading news media survive digital transformation (pp. 177–230). Nordicom. [Google Scholar]
- Parratt Fernández, S., Rodríguez Pallares, M., & Pérez Serrano, M. J. (2024). Artificial intelligence in journalism: An automated news provider. Index Comunicación, 14(1), 183–205. [Google Scholar] [CrossRef]
- Peña-Alonso, U., Peña-Fernández, S., & Meso-Ayerdi, K. (2025). Journalists’ perceptions of artificial intelligence and disinformation risks. Journalism and Media, 6(3), 133. [Google Scholar] [CrossRef]
- Plano Clark, V. L. (2016). Mixed methods research. The Journal of Positive Psychology, 12(3), 305–306. [Google Scholar] [CrossRef]
- Pleios, G., & Tastsoglou, M. (2025). AI and the news: Challenges arisen from the adoption of ai in news production. Postmodernism Problems, 15(1), 3–24. [Google Scholar] [CrossRef]
- Podara, A., & Matsiola, M. (2023). How the Greek television landscape changed during the financial crisis. Journal of Media Business Studies, 20(3), 284–301. [Google Scholar] [CrossRef]
- Price, L. T., Clark, M., Papadopoulou, L., & Maniou, T. A. (2024). Southern European press challenges in a time of crisis: A cross-national study of Bulgaria, Cyprus, Greece and Malta. Journalism, 25(11), 2420–2439. [Google Scholar] [CrossRef]
- Primo, A., & Zago, G. (2014). Who and what do journalism? An actor-network perspective. Digital Journalism, 3(1), 38–52. [Google Scholar] [CrossRef]
- Ryfe, D. (2022). Actor-network theory and digital journalism. Digital Journalism, 10(2), 267–283. [Google Scholar] [CrossRef]
- Sarrionandia, B., Peña-Fernández, S., Ángel Pérez-Dasilva, J., & Larrondo-Ureta, A. (2025). Artificial intelligence training in media: Addressing technical and ethical challenges for journalists and media professionals. Frontiers in Communication, 10, 1537918. [Google Scholar] [CrossRef]
- Schapals, A. K., & Porlezza, C. (2020). Assistance or resistance? Evaluating the intersection of automated journalism and journalistic role conceptions. Media and Communication, 8(3), 16–26. [Google Scholar] [CrossRef]
- Sirén-Heikel, S., Kjellman, M., & Lindén, C. G. (2023). At the crossroads of logics: Automating newswork with artificial intelligence—(Re) defining journalistic logics from the perspective of technologists. Journal of the Association for Information Science and Technology, 74(3), 354–366. [Google Scholar] [CrossRef]
- Spyridou, L. P., Matsiola, M., Veglis, A., Kalliris, G., & Dimoulas, C. (2013). Journalism in a state of flux: Journalists as agents of technology innovation and emerging news practices. International Communication Gazette, 75(1), 76–98. [Google Scholar] [CrossRef]
- Stalph, F. (2019). Hybrids, materiality, and black boxes: Concepts of actor-network theory in data journalism research. Sociology Compass, 13(11), e12738. [Google Scholar] [CrossRef]
- Stray, J. (2021). Making artificial intelligence work for investigative journalism. Digital Journalism, 7(8), 1076–1097. [Google Scholar] [CrossRef]
- Subedi, D. (2016). Explanatory sequential mixed method design as the third research community of knowledge claim. American Journal of Educational Research, 4(7), 570–577. [Google Scholar] [CrossRef]
- Şahin, M., & Aybek, E. (2019). Jamovi: An easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670–692. [Google Scholar] [CrossRef]
- Tandoc, E. C., Jr. (2019). Journalism at the periphery. Media and Communication, 7(4), 138–143. [Google Scholar] [CrossRef]
- Thäsler-Kordonouri, S., & Koliska, M. (2025). Journalistic agency and power in the era of artificial intelligence. Journalism Practice, 19(10), 2189–2208. [Google Scholar] [CrossRef]
- Túñez-López, J. M., Fieiras-Ceide, C., & Vaz-Álvarez, M. (2021). Impact of artificial intelligence on journalism: Transformations in the company, products, contents and professional profile. Communication & Society, 34(1), 177–193. [Google Scholar] [CrossRef]
- Vaismoradi, M., Jones, J., Turunen, H., & Snelgrove, S. (2016). Theme development in qualitative content analysis and thematic analysis. Journal of Nursing Education and Practice, 6(5), 100–110. [Google Scholar] [CrossRef]
- Van Dalen, A. (2024). Revisiting the algorithms behind the headlines. How journalists respond to professional competition of generative AI. Journalism Practice, 1–18. [Google Scholar] [CrossRef]
- Van Teijlingen, E., & Hundley, V. (2002). The importance of pilot studies. Nursing Standard (Through 2013), 16(40), 33. Available online: https://www.proquest.com/scholarly-journals/importance-pilot-studies/docview/219814873/se-2 (accessed on 15 June 2025).
- Vatikiotis, P., Maniou, T. A., & Spyridou, P. (2024). Towards the individuated journalistic worker in pandemic times: Reflections from Greece and Cyprus. Journalism, 25(11), 2320–2338. [Google Scholar] [CrossRef]
- Venturini, T. (2010). Diving in magma: How to explore controversies with actor-network theory. Public Understanding of Science, 19(3), 258–273. [Google Scholar] [CrossRef]
- Wiard, V. (2019, May 23). Actor-network theory and journalism. Oxford Research Encyclopedia of Communication. Available online: https://oxfordre.com/communication/view/10.1093/acrefore/9780190228613.001.0001/acrefore-9780190228613-e-774 (accessed on 19 August 2025).
- Williams, M., & Moser, T. (2019). The art of coding and thematic exploration in qualitative research. International Management Review, 15(1), 45–55. [Google Scholar]
- Willig, C., & Rogers, W. S. (Eds.). (2017). The SAGE handbook of qualitative research in psychology. Sage Publications. [Google Scholar]
- Wu, S. (2025). What “digital literacies” must journalists have? Unpacking how journalists define and practice news literacy, data literacy, and algorithmic and AI literacy in the digital age. Journalism Studies, 1–18. [Google Scholar] [CrossRef]
- Wu, S., Tandoc, E. C., Jr., & Salmon, C. T. (2018). Journalism reconfigured: Assessing human–machine relations and the autonomous power of automation in news production. Journalism Studies, 20(10), 1440–1457. [Google Scholar] [CrossRef]
- Zamith, R., & Haim, M. (2020). Algorithmic actants in practice, theory, and method. Media and Communication, 8(3), 1–4. [Google Scholar] [CrossRef]
- Zervakaki, V., Papathanassopoulos, S., & Karadimitriou, A. (2025). Re-training Greek journalists on new media practices: Expecting re-employment, yet falling short. Journalism. [Google Scholar] [CrossRef]
| Gender | Percentage | Age | Percentage |
| Male | 53.4% | 18–34 | 20.3% |
| Female | 45.9% | 35–44 | 23.6% |
| Not identified | 0.7% | 45–54 | 33.1% |
| 55 and more | 23% | ||
| Educational level | Percentage | Working Organizations | Percentage |
| PhD | 6% | None | 10.1% |
| Master’s degree | 14.2% | One | 55.4% |
| University diploma | 39.9% | Two | 20.9% |
| Post-secondary education | 33.8% | More | 13.5% |
| Highschool | 6.1% |
| Scales | Cronbach’s α |
|---|---|
| Skill Level | 0.897 |
| Education Level | 0.861 |
| Perceived Positive Effects of AI | 0.890 |
| AI and Big Data Combination | 0.820 |
| Perceived Negative Effects of AI | 0.861 |
| Variable | Mean | SD |
|---|---|---|
| Knowledge of AI | 4.20 | 0.78 |
| Knowledge of Big Data | 3.64 | 0.85 |
| Journalism Skills | 4.23 | 0.71 |
| Data Analysis Skills | 3.12 | 0.92 |
| Machine Learning Skills | 2.54 | 1.01 |
| Scale | Mean (SD) | t (df) | Cohen’s d |
|---|---|---|---|
| Perceived Positive Effects of AI | 3.39 (0.81) | 5.57 (147) * | 0.458 |
| AI and Big Data Combination | 3.54 (0.79) | 8.09 (147) * | 0.665 |
| Perceived Negative Effects of AI | 3.60 (0.76) | 10.1 (147) * | 0.827 |
| Frequency of Conducted Seminars | Counts | % of Total |
|---|---|---|
| Every six months | 60 | 40.5% |
| Every year | 70 | 47.3% |
| Every three years | 5 | 3.4% |
| More than three years | 2 | 1.4% |
| No need | 11 | 7.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsiola, M.; Pilitsidou, Z. Efficiency and Uncertainty: Understanding Journalists’ Attitudes Toward AI Adoption in Greece. Journal. Media 2025, 6, 187. https://doi.org/10.3390/journalmedia6040187
Matsiola M, Pilitsidou Z. Efficiency and Uncertainty: Understanding Journalists’ Attitudes Toward AI Adoption in Greece. Journalism and Media. 2025; 6(4):187. https://doi.org/10.3390/journalmedia6040187
Chicago/Turabian StyleMatsiola, Maria, and Zacharenia Pilitsidou. 2025. "Efficiency and Uncertainty: Understanding Journalists’ Attitudes Toward AI Adoption in Greece" Journalism and Media 6, no. 4: 187. https://doi.org/10.3390/journalmedia6040187
APA StyleMatsiola, M., & Pilitsidou, Z. (2025). Efficiency and Uncertainty: Understanding Journalists’ Attitudes Toward AI Adoption in Greece. Journalism and Media, 6(4), 187. https://doi.org/10.3390/journalmedia6040187

