A Methodological Proposal to Evaluate Journalism Texts Created for Depopulated Areas Using AI
Abstract
:1. Introduction
2. AI and the Generation of Texts for Election Reports
2.1. Automated Texts and Their Impact in Rural Areas
2.2. Generative AI Tools and Models
2.3. Previous Studies
2.4. The RTVE Project
3. Methods
4. Results
4.1. Second Analysis
4.2. Third Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | These reports can be consulted on https://www.rtveia.es/elecciones-municipales-2023 (accessed on 20 March 2024). |
References
- Aramburu Moncada, Luisa Gracielala, Isaac López Redondo, and Antonio López Hidalgo. 2023. Inteligencia artificial en RTVE al servicio de la España vacía. Proyecto de cobertura informativa con redacción automatizada para las elecciones municipales de 2023. Revista Latina de Comunicación Social 81: 1–16. [Google Scholar] [CrossRef]
- Armentia Vizuete, José Ignacio, and José María Caminos Marcet. 2003. Fundamentos de Periodismo Impreso. Barcelona: Ariel Comunicación. [Google Scholar]
- Aydın, Ömer, and Enis Karaarslan. 2022. OpenAI ChatGPT generated literature review: Digital twin in healthcare. In Emerging Computer Technologies. Edited by Ö. Aydın. Izmir: İzmir Akademi Dernegi, pp. 22–31. [Google Scholar] [CrossRef]
- Brennen, J. Scott, Philipp N. Howard, and Rasmus K. Nielsen. 2022. What to expect when you’re expecting robots: Futures, expectations, and pseudo-artificial general intelligence in UK news. Journalism 23: 22–38. [Google Scholar] [CrossRef]
- Calvo-Rubio, Luis Mauricio, and José Luis Rojas-Torrijos. 2024. Criteria for journalistic quality in the use of artificial intelligence. Communication & Society 37: 247–59. [Google Scholar] [CrossRef]
- Calvo-Rubio, Luis Mauricio, and María José Ufarte-Ruiz. 2020. Percepción de docentes universitarios, estudiantes, responsables de innovación y periodistas sobre el uso de inteligencia artificial en periodismo. El Profesional de la Información 29: e290109. [Google Scholar] [CrossRef]
- Canavilhas, João. 2015. Nuevos medios, nuevo ecosistema. El Profesional de la Información 24: 357–62. [Google Scholar] [CrossRef]
- Carlson, Matt. 2015. The Robotic Reporter. Automated journalism and the redefinition of labor, compositional forms, and journalistic authority. Digital Journalism 3: 416–31. [Google Scholar] [CrossRef]
- Clerwall, Christer. 2014. Enter the Robot Journalist. Users’ perceptions of automated content. Journalism Practice 8: 519–31. [Google Scholar] [CrossRef]
- Cobo, Silvia. 2012. Internet Para Periodistas. Kit de Supervicencia Para la era Digital. Barcelona: UOC. [Google Scholar]
- Diaz-Garcia, Jose Angel, M. Dolores Ruiz, and Maria J. Martin-Bautista. 2020. NonQuery-Based Pattern Mining and Sentiment Analysis for Massive Microblogging Online Text. IEEE Access 8: 78166–82. [Google Scholar] [CrossRef]
- Digiday. 2017. Spanish Publisher El País Drove nearly 1000 Bot Subscribers over French Election. Digiday. Available online: https://digiday.com/media/spanish-publisher-el-pais-drove-nearly-1000-news-bot-subscribers-french-election/ (accessed on 22 February 2024).
- Direito-Rebollal, Sabela, and Karen Donders. 2023. Public service media as drivers of innovation: A case study analysis of policies and strategies in Spain, Ireland, and Belgium. Communications 48: 43–67. [Google Scholar] [CrossRef]
- Dovifat, Emil. 1959. Periodismo. Ciudad de México: Unión Tipográfica Editorial Hispanoamericana. [Google Scholar]
- Estatuto de Información de la Corporación RTVE. 2008. Available online: https://www.rtve.es/contenidos/corporacion/Estatuto_de_informacion.pdf (accessed on 14 May 2008).
- Fanta, Alexander. 2017. Putting Europe’s Robots on the Map: Automated Journalism in News Agencies. Oxford: University of Oxford, Reuters Institute for the Study of Journalism. [Google Scholar]
- Fieiras-Ceide, César, Martín Vaz-Álvarez, and José Miguel Túñez-López. 2023. Designing personalisation of European public service media (PSM): Trends on algorithms and artificial intelligence for content distribution. Profesional de la Información 32: 1–13. [Google Scholar] [CrossRef]
- Grijelmo, Álex. 2014. El Estilo del Periodista. London: Taurus. [Google Scholar]
- Guerrero-Solé, Frederic, and Coloma Ballester. 2023. El impacto de la Inteligencia Artificial Generativa en la disciplina de la comunicación. Hipertext.net 26: 1–3. [Google Scholar] [CrossRef]
- Guida, Giovanni, and Giancarlo Mauri. 1986. Evaluation of natural language processing systems: Issues and approaches. Proceedings of the IEEE 74: 1026–35. [Google Scholar] [CrossRef]
- Guía de Igualdad de RTVE. 2022. Available online: https://www.rtve.es/contenidos/documentos/guia_igualdad_2020.pdf (accessed on 8 March 2024).
- Haim, Mario, and Andreas Graefe. 2017. Automated News. Better than expected? Digital Journalism 5: 1044–59. [Google Scholar] [CrossRef]
- Hatcher-Moore, Philip. 2023. Salco 2023: Making News Hyperlocal. BBC. Available online: https://www.bbc.co.uk/rdnewslabs/news/salco-2023 (accessed on 19 May 2023).
- Hayes, Andrew F., and Klaus Krippendorff. 2007. Answering the Call for a Standard Reliability Measure for Coding Data. Communication Methods and Measures 1: 77–89. [Google Scholar] [CrossRef]
- Jia, Chenyan, and Thomas Johnson. 2021. Source Credibility Matters: Does Automated Journalism Inspire Selective Exposure? International Journal of Communication 15: 3760–81. [Google Scholar]
- Jung, Jaemin, Youngju Kim, Haeyeop Song, Hyunsuk Im, and Sewook Oh. 2017. Intrusion of software robots into journalism: The public’s and journalists’ perceptions of news written by algorithms and human journalists. Computers in Human Behavior 71: 291–98. [Google Scholar] [CrossRef] [PubMed]
- Krippendorff, Klaus. 2004. Measuring the Reliability of Qualitative Text Analysis Data. Quality & Quantity 38: 787–200. [Google Scholar] [CrossRef]
- LeCompte, Celeste. 2015. Automation in the Newsroom. How algorithms can help reporters. Nieman Reports 69: 32–45. Available online: http://niemanreports.org/wp-content/uploads/2015/08/NRsummer2015.pdf (accessed on 23 March 2024).
- Lermann Henestrosa, Angelica, Hannah Grieving, and Joachim Kimmerle. 2023. Automated journalism: The effects of AI authorship and evaluative information on the perception of a science journalism article. Computers in Human Behavior 138: 107445. [Google Scholar] [CrossRef]
- Lopezosa, Carlos. 2023. ChatGPT y comunicación científica: Hacia un uso de la Inteligencia Artificial que sea tan útil como responsable. Hipertext.net 26: 17–21. [Google Scholar] [CrossRef]
- Lopezosa, Carlos, Carles Pont-Sorribes, Lluís Codina, and Mari Vállez. 2023. Use of generative artificial intelligence in the training of journalists: Challenges, uses and training proposal. Profesional de la Información 32: e320408. [Google Scholar] [CrossRef]
- López Delacruz, Santiago. 2023. Un vínculo paradójico: Narrativas audiovisuales generadas por inteligencia artificial, entre el pastiche y la cancelación del futuro. Hipertext.net 26: 31–35. [Google Scholar] [CrossRef]
- López Hidalgo, Antonio. 2001. El Titular: Manual de Titulación Periodística. Salamanca: Comunicación Social Ediciones y Publicaciones. [Google Scholar]
- López Hidalgo, Antonio. 2019. El Titular. Tratado Sobre las Técnicas, Modalidades y Otros Artificios Propios de la Titulación Periodística. Salamanca: Comunicación Social Ediciones y Publicaciones. [Google Scholar]
- Mandato-Marco a la Corporación RTVE previsto en el artículo 4 de la Ley 17/2006, de 5 de junio, de la Radio y la Televisión de Titularidad Estatal, aprobado por los Plenos del Congreso de los Diputados y del Senado. 2008. Available online: https://www.boe.es/boe/dias/2008/06/30/pdfs/A28833-28843.pdf (accessed on 12 December 2007).
- Manual de Estilo de RTVE. 2010. Available online: https://manualdeestilo.rtve.es (accessed on 23 July 2010).
- Martínez Albertos, J. L. 1974. Redacción Periodística. (Los Estilos y los Géneros en la Prensa Escrita). Barcelona: A.T.E. [Google Scholar]
- Murcia Verdú, Francisco José, Rubén Ramos Antón, and Luis Mauricio Calvo Rubio. 2022. Análisis comparado de la calidad de crónicas deportivas elaboradas por inteligencia artificial y periodistas. Revista Latina de Comunicación Social 80: 91–111. [Google Scholar] [CrossRef]
- Odriozola-Chéné, Javier, Javier Díaz Noci, Ana Serrano-Tellería, Rosa Pérez-Arozamena, Laura Pérez-Altable, Juan Linares-Lanzman, Lucía García-Carretero, Luis Mauricio Calvo-Rubio, Manuel Torres-Mendoza, and Adolfo Antón-Bravo. 2020. Inequality in times of pandemics: How online media are starting to treat the economic consequences of the coronavirus crisis. Profesional de la Información 29: e290403. [Google Scholar] [CrossRef]
- OpenAI. 2022. Introducing ChatGPT. Available online: https://openai.com/blog/chatgpt (accessed on 23 July 2010).
- Rojas Torrijos, José Luis. 2021. Semi-Automated Journalism: Reinforcing Ethics to Make the Most of Artificial Intelligence for Writing News. In News Media Innovation Reconsidered. Edited by María Luengo and Susana Herrera. Hoboken: Wiley-Blackwell, pp. 124–37. [Google Scholar]
- Rojas Torrijos, José Luis, and Carlos Toural-Bran. 2019. Periodismo deportivo automatizado. Estudio de caso de AnaFut, el bot desarrollado por El Confidencial para la escritura de crónicas de fútbol. Doxa Comunicación 29: 235–54. [Google Scholar] [CrossRef]
- RTVE. 2023. RTVE Pone a Prueba la Inteligencia Artificial Para Cubrir las Elecciones del 28 de mayo. RTVE.es. Available online: https://www.rtve.es/noticias/20230528/inteligencia-artificial-noticias-elecciones-28-mayo-poblaciones-menos-1000-habitantes/2446742.shtml (accessed on 23 July 2010).
- Salaverría, R. 2005. Redacción Periodística en Internet. Pamplona: EUNSA. [Google Scholar]
- Sánchez Gonzales, Hada M., and María Sánchez González. 2017. Los bots como servicio de noticias y de conectividad emocional con las audiencias. El caso de Politibot. Doxa Comunicación 25: 63–84. [Google Scholar] [CrossRef]
- Sandoval-Martín, Teresa, and Leonardo La-Rosa Barrolleta. 2023. Investigación sobre la calidad de las noticias automatizadas en la producción científica internacional: Metodologías y resultados. Cuadernos.info 55: 114–36. [Google Scholar] [CrossRef]
- Tandoc, Edson C., Jr., Lim Jia Yao, and Shangyuan Wu. 2020. Man vs. Machine? The Impact of Algorithm Authorship on News Credibility. Digital Journalism 8: 548–62. [Google Scholar] [CrossRef]
- Tejedor, Santiago. 2023. La Inteligencia Artificial en el Periodismo: Mapping de Conceptos, Casos y Recomendaciones. Barcelona: Editorial UOC. [Google Scholar]
- Tejedor, Santiago, and Pere Vila. 2021. Exo Journalism: A Conceptual Approach to a Hybrid Formula between Journalism and Artificial Intelligence. Journalism and Media 2: 48. [Google Scholar] [CrossRef]
- Trillo-Domínguez, Magdalena, and Jordi Alberich-Pascual. 2017. Deconstrucción de los géneros periodísticos y nuevos medios: De la pirámide invertida al cubo de Rubik. El Profesional de la Información 26: 1091–99. [Google Scholar] [CrossRef]
- Túñez-López, José Miguel, Carlos Toural-Bran, and Santiago Cacheiro-Requeijo. 2018. Uso de bots y algoritmos para automatizar la redacción de noticias: Percepción y actitudes de los periodistas en España. El Profesional de la Información 27: 750–58. [Google Scholar]
- Ufarte Ruiz, María José, and Francisco José Murcia Verdú. 2018. Desarrollo académico y profesional sobre el uso de la inteligencia artificial en las redacciones periodísticas. Textual & Visual Media 11. [Google Scholar]
- Van-Dis, Eva A. M., Willem Zuidema, Johan Bollen, van Robert Rooij, and Claudi L. Bockting Alo. 2023. ChatGPT: Five priorities for research. Nature 614: 224–26. [Google Scholar] [CrossRef] [PubMed]
- Waddell, T. Franklin. 2019. Attribution Practices for the Man-Machine Marriage: How Perceived Human Intervention, Automation Metaphors, and Byline Location Affect the Perceived Bias and Credibility of Purportedly Automated Content. Journalism Practice 13: 1255–72. [Google Scholar] [CrossRef]
- Wang, Shuai, Bevan Koopman, Harrisen Scells, and Guido Zuccon. 2023. Can ChatGPT Write a Good Boolean Query for Systematic Review Literature Search? arXiv arXiv:2302.03495. doi:10.48550/arXiv.2302.03495. [Google Scholar] [CrossRef]
- Wölker, Anja, and Thomas E. Powell. 2018. Algorithms in the newsroom? News readers’ perceived credibility and selection of automated journalism. Journalism 22: 1–18. [Google Scholar] [CrossRef]
- Zaragoza, Fuster María Teresa, and José Alberto García Avilés. 2022. Public Service Media laboratories as communities of practice: Implementing innovation at BBC News Labs and RTVE Lab. Journalism Practice 18: 1256–74. [Google Scholar] [CrossRef]
- Zheng, Yue, Bu Zhong, and Fan Yang. 2018. When algorithms meet journalism: The user perception to automated news in a cross-cultural context. Computers in Human Behavior 86: 266–75. [Google Scholar] [CrossRef]
Characteristic | Cluster | Variable | Dimension |
---|---|---|---|
Journalistic quality | Headline elements | Billboard | Autonomy |
Clarity | |||
Concision | |||
Spellcheck | |||
Grammar check | |||
Headline | Informative | ||
Dynamic | |||
What/Who | |||
Summarizes the news | |||
Brevity | |||
Concision | |||
Clarity | |||
Complete structure | |||
Precision | |||
Autonomy | |||
Absence of punctuation marks | |||
Spellcheck | |||
Grammar check | |||
Callouts | Typographical difference | ||
Autonomy | |||
Information relevance | |||
Precision | |||
Spellcheck | |||
Grammar check | |||
Text | First paragraph | Highlighted elements | |
No summary | |||
Begins without adverb or adverbial | |||
Spellcheck | |||
Grammar check | |||
Context | |||
Body text | Background | ||
Facts | |||
Informative interpretation of data | |||
Spellcheck | |||
Grammar check | |||
Overall assessment | Clarity | ||
Concision | |||
Coherence | |||
Cohesion | |||
Suitable for the medium used | Online media elements | Links | Presence |
Relevance | |||
Accurate anchor text | |||
Photos | Presence | ||
Relevance | |||
Caption (present and correct) | |||
Graphics | Presence | ||
Relevance | |||
Headline | |||
Audio | Presence | ||
Relevance | |||
Headline | |||
Suitable for public medium | Complies with RTVE policies | Public relevance of the information | |
Accuracy | |||
Objectivity | |||
Impartiality | |||
Discriminatory language | |||
Inclusive language | |||
Precise use of data |
Headlines | Text | Internet Resource | Public Medium | Medium |
---|---|---|---|---|
0.424 | 0.549 | 0.900 | 0.850 | 0.681 |
Cluster | Variable | Dimension | % Reports That Comply |
---|---|---|---|
Headline elements | Billboard | Autonomy | 49.06% |
Clarity | 100% | ||
Concision | 100% | ||
Spellcheck | 100% | ||
Grammar check | 100% | ||
Headline | Informative | 98.11% | |
Dynamic | 100% | ||
What/Who | 100% | ||
Summarizes the news | 97.17% | ||
Brevity | 100% | ||
Concision | 97.17% | ||
Clarity | 97.17% | ||
Complete structure | 100% | ||
Precision | 92.45% | ||
Autonomy | 100% | ||
Absence of punctuation marks | 100% | ||
Spellcheck | 100% | ||
Grammar check | 99.06% | ||
Callouts | Typographical difference | 83.96% | |
Autonomy | 83.96% | ||
Information relevance | 100% | ||
Precision | 93.4% | ||
Spellcheck | 96.23% | ||
Grammar check | 87.74% | ||
Text | First paragraph | Highlighted elements | 100% |
No summary | 100% | ||
Begins without adverb or adverbial | 0% | ||
Spellcheck | 89.62% | ||
Grammar check | 95.28% | ||
Body text | Context | 82.08% | |
Background | 99.05% | ||
Facts | 98.11% | ||
Informative interpretation of data | 52.83% | ||
Spellcheck | 57.55% | ||
Grammar check | 83.02% | ||
Overall assessment | Clarity | 2.13 | |
Concision | 2.06 | ||
Coherence | 1.86 | ||
Cohesion | 1.73 | ||
Online media elements | Links | Presence | 100% |
Relevance | 100% | ||
Accurate anchor text | 100% | ||
Photos | Presence | 100% | |
Relevance | 27.36% | ||
Caption (present and correct) | 0% | ||
Audio | Presence | 100% | |
Relevance | 100% | ||
Headline | 16.04% | ||
Graphics | Presence | 99.06% | |
Relevance | 99.06% | ||
Headline | 50.94% | ||
Suitable for public medium | Public relevance of the information | 99.06% | |
Accuracy | 90.57% | ||
Objectivity | 93.4% | ||
Impartiality | 94.34% | ||
Discriminatory language | 100% | ||
Inclusive language | 0% | ||
Precise use of data | 87.74% |
Headline Elements | Discrepancies between the Callouts and the Text |
---|---|
Text | Including sources of information in the text Including the total number of councillors on the council in constructions like ‘The party obtained a total of X councillors’ out of a total of X. Replacing ‘a pact with the other parties to be able to govern’ with a phrase that does not indicate the need for a pact with all of them. Data interpretation: discrepancies between the headline, callouts and information (in the case of an absolute majority) In communities with an absolute majority, repeating this circumstance at several points, making the text seem repetitive and less coherent Starting paragraphs with adverbials Incorrect concordances Missing words Discrepancies between callouts and text Redundancies Misinterpreting data with regard to pacts to form a government Presenting a fair victory |
Online media elements | Need to include photo and author captions Need to include photos with informative content Need to include captions and headlines with graphics |
Suitability for public medium | Using generic terms (for example, ‘socialists’ for the Socialist Party or ‘inhabitants’ or ‘residents’ for the electorate or citizens) |
Element | Characteristic | % Reports That Comply | Results from First Sample | |
---|---|---|---|---|
Headline elements | Billboard | Autonomy | Not evaluated | 49.06% |
Clarity | 100% | |||
Concision | 100% | |||
Spellcheck | 100% | |||
Grammar check | 100% | |||
Headline | Informative | 100% | 98.11% | |
Dynamic | 100% | 100% | ||
What/Who | 99.85% | 100% | ||
Summarizes the news | 100% | 97.17% | ||
Brevity | 100% | 100% | ||
Concision | 99.54% | 97.17% | ||
Clarity | 99.21% | 97.17% | ||
Complete structure | 100% | 100% | ||
Precision | 98.75% | 92.45% | ||
Autonomy | 100% | 100% | ||
Absence of punctuation marks | 100% | 100% | ||
Spellcheck | 99.84% | 100% | ||
Grammar check | 100% | 99.06% | ||
Callouts | Typographical difference | 66.51% | 83.96% | |
Autonomy | 88.31% | 83.96% | ||
Information relevance | 99.1% | 100% | ||
Precision | 97.31% | 93.4% | ||
Spellcheck | 91.47% | 96.23% | ||
Grammar check | 88.63% | 87.74% | ||
Text | First paragraph/lead | Highlighted elements | 99.68% | 100% |
No summary | 99.84% | 100% | ||
Begins without adverb or adverbial | 0.32% | 0% | ||
Spellcheck | 91% | 89.62% | ||
Grammar check | 99.68% | 95.28% | ||
Body text | Context | 83.25% | 82.08% | |
Background | 100% | 99.05% | ||
Facts | 99.21% | 98.11% | ||
Informative interpretation of data | 57.5% | 52.83% | ||
Spellcheck | 44.85% | 57.55% | ||
Grammar check | 98.92% | 83.02% | ||
Overall assessment | Clarity | 1.84 | 2.13 | |
Concision | 2.05 | 2.06 | ||
Coherence | 2 | 1.86 | ||
Cohesion | 1.86 | 1.73 | ||
Online media elements | Links | Presence | 100% | 100% |
Relevance | 100% | 100% | ||
Accurate anchor text | 100% | 100% | ||
Photos | Presence | 100% | 100% | |
Relevance | 49.37% | 27.36% | ||
Caption (present and correct) | 38.88% | 0% | ||
Audio | Presence | 100% | 100% | |
Relevance | 100% | 100% | ||
Headline | 0.1% | 16.04% | ||
Graphics | Presence | 100% | 99.06% | |
Relevance | 97.29% | 99.06% | ||
Headline | 100% | 50.94% | ||
Suitable for public medium | Public relevance of the information | 99.82% | 99.06% | |
Accuracy | 95.12% | 90.57% | ||
Objectivity | 98.01% | 93.4% | ||
Impartiality | 97.29% | 94.34% | ||
Discriminatory language | 99.84% | 100% | ||
Inclusive language | 2.37% | 0% | ||
Precise use of data | 80.73% | 87.74% |
Element | Characteristic | % Articles That Comply | Results from Second Sample | Results from First Sample | |
---|---|---|---|---|---|
Headline elements | Billboard | Autonomy | Not evaluated | Not evaluated | 49.06% |
Clarity | 100% | ||||
Concision | 100% | ||||
Spellcheck | 100% | ||||
Grammar check | 100% | ||||
Headline | Informative | 100% | 100% | 98.11% | |
Dynamic | 100% | 100% | 100% | ||
What/Who | 100% | 99.85% | 100% | ||
Summarizes the news | 100% | 100% | 97.17% | ||
Brevity | 100% | 100% | 100% | ||
Concision | 99.47% | 99.54% | 97.17% | ||
Clarity | 99.47% | 99.21% | 97.17% | ||
Complete structure | 100% | 100% | 100% | ||
Precision | 99.65% | 98.75% | 92.45% | ||
Autonomy | 100% | 100% | 100% | ||
Absence of punctuation marks | 100% | 100% | 100% | ||
Spellcheck | 99.82% | 99.84% | 100% | ||
Grammar check | 99.65% | 100% | 99.06% | ||
Callouts | Typographical difference | Not evaluated | 66.51% | 83.96% | |
Autonomy | 80.35% | 88.31% | 83.96% | ||
Information relevance | 99.82% | 99.1% | 100% | ||
Precision | 99.29% | 97.31% | 93.4% | ||
Spellcheck | 87.79% | 91.47% | 96.23% | ||
Grammar check | 81.42% | 88.63% | 87.74% | ||
Text | First paragraph/lead | Highlighted elements | 100% | 99.68% | 100% |
No summary | 99.84% | 99.84% | 100% | ||
Begins without adverb or adverbial | 0.35% | 0.32% | 0% | ||
Spellcheck | 87.96% | 91% | 89.62% | ||
Grammar check | 95.75% | 99.68% | 95.28% | ||
Body text | Context | 82.65% | 83.25% | 82.08% | |
Background | 99.47% | 100% | 99.05% | ||
Facts | 99.82% | 99.21% | 98.11% | ||
Informative interpretation of data | 62.30% | 57.5% | 52.83% | ||
Spellcheck | 45.49% | 44.85% | 57.55% | ||
Grammar check | 87.26% | 98.92% | 83.02% | ||
Overall assessment | Clarity | 2.02 | 1.86 | 2.13 | |
Concision | 2.27 | 2.04 | 2.06 | ||
Coherence | 2.08 | 2 | 1.86 | ||
Cohesion | 1.91 | 1.88 | 1.73 | ||
Online media elements | Links | Presence | 100% | 100% | 100% |
Relevance | 100% | 100% | 100% | ||
Accurate anchor text | 100% | 100% | 100% | ||
Photos | Presence | 99.82% | 100% | 100% | |
Relevance | 82.83% | 49.37% | 27.36% | ||
Caption (present and correct) | 96.28% | 38.88% | 0% | ||
Audio | Presence | 100% | 100% | 100% | |
Relevance | 100% | 100% | 100% | ||
Headline | 43.38% | 0.1% | 16.04% | ||
Graphics | Presence | 100% | 100% | 99.06% | |
Relevance | 98.58% | 97.29% | 99.06% | ||
Headline | 100% | 100% | 50.94% | ||
Suitable for public medium | Public relevance of the information | 100% | 99.82% | 99.06% | |
Accuracy | 98.05% | 95.12% | 90.57% | ||
Objectivity | 99.12% | 98.01% | 93.4% | ||
Impartiality | 97.52% | 97.29% | 94.34% | ||
Discriminatory language | 100% | 99.84% | 100% | ||
Inclusive language | 5% | 2.37% | 0% | ||
Precise use of data | 95.93% | 80.73% | 87.74% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo Rubio, L.M.; Ufarte Ruiz, M.J.; Murcia Verdú, F.J. A Methodological Proposal to Evaluate Journalism Texts Created for Depopulated Areas Using AI. Journal. Media 2024, 5, 671-687. https://doi.org/10.3390/journalmedia5020044
Calvo Rubio LM, Ufarte Ruiz MJ, Murcia Verdú FJ. A Methodological Proposal to Evaluate Journalism Texts Created for Depopulated Areas Using AI. Journalism and Media. 2024; 5(2):671-687. https://doi.org/10.3390/journalmedia5020044
Chicago/Turabian StyleCalvo Rubio, Luis Mauricio, María José Ufarte Ruiz, and Francisco José Murcia Verdú. 2024. "A Methodological Proposal to Evaluate Journalism Texts Created for Depopulated Areas Using AI" Journalism and Media 5, no. 2: 671-687. https://doi.org/10.3390/journalmedia5020044
APA StyleCalvo Rubio, L. M., Ufarte Ruiz, M. J., & Murcia Verdú, F. J. (2024). A Methodological Proposal to Evaluate Journalism Texts Created for Depopulated Areas Using AI. Journalism and Media, 5(2), 671-687. https://doi.org/10.3390/journalmedia5020044