The Use of Ultra-High Resolution UAV Lidar Infrared Intensity for Enhancing Coastal Cover Classification †
Abstract
:1. Introduction
2. Methodology
2.1. Study Site
2.2. Drone Lidar Flight
3. Results and Discussion
3.1. Landscape Scale
3.2. Habitat Scale
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Toimil, A.; Losada, I.J.; Nicholls, R.J.; Dalrymple, R.A.; Stive, M.J. Addressing the challenges of climate change risks and adaptation in coastal areas: A review. Coast. Eng. 2020, 156, 103611. [Google Scholar] [CrossRef]
- Bukvic, A.; Rohat, G.; Apotsos, A.; de Sherbinin, A. A systematic review of coastal vulnerability mapping. Sustainability 2020, 12, 2822. [Google Scholar] [CrossRef]
- Collin, A.; James, D.; Mury, A.; Letard, M.; Houet, T.; Gloria, H.; Feunteun, E. Multiscale Spatiotemporal NDVI Mapping of Salt Marshes Using Sentinel-2, Dove, and UAV Imagery in the Bay of Mont-Saint-Michel, France. In European Spatial Data for Coastal and Marine Remote Sensing; Springer International Publishing: Cham, Switzerland; New York, NY, USA, 2022; pp. 17–38. [Google Scholar]
- Collin, A.; Pastol, Y.; Letard, M.; Le Goff, L.; Guillaudeau, J.; James, D.; Feunteun, E. Increasing the Nature-Based Coastal Protection Using Bathymetric Lidar, Terrain Classification, Network Modelling: Reefs of Saint-Malo’s Lagoon? In European Spatial Data for Coastal and Marine Remote Sensing; Springer International Publishing: Cham, Switzerland; New York, NY, USA, 2022; pp. 235–241. [Google Scholar]
- Collin, A.; Ramambason, C.; Pastol, Y.; Casella, E.; Rovere, A.; Thiault, L.; Davies, N. Very high resolution mapping of coral reef state using airborne bathymetric LiDAR surface-intensity and drone imagery. Int. J. Remote Sens. 2018, 39, 5676–5688. [Google Scholar] [CrossRef]
- Mury, A.; Collin, A.; Etienne, S.; Jeanson, M. Wave attenuation service by intertidal coastal ecogeosystems in the Bay of Mont-Saint-Michel, France: Review and meta-analysis. In Estuaries and Coastal Zones in Times of Global Change; Springer Water, Springer: Singapore, 2020; pp. 555–572. [Google Scholar]
Habitat Name | Habitat Description | Habitat Thumbnail |
---|---|---|
Salt marsh | High-salt marsh herbaceous stratum | |
Grass | Terrestrial herbaceous stratum | |
Dry grass | Dried terrestrial herbaceous stratum | |
Shrub | Terrestrial arbustive stratum | |
Tree | Terrestrial arborescent stratum | |
Soil | Mixed organic/mineral bare ground | |
Sediment | Mineral-bare ground | |
Road | Tar anthropogenic infrastructure | |
Car | Anthropogenic vehicle |
Salt Marsh | Grass | Dry Grass | Shrub | Tree | Soil | Sediment | Road | Car | |
---|---|---|---|---|---|---|---|---|---|
Salt marsh | 1955 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Grass | 0 | 2298 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dry grass | 334 | 2 | 1966 | 157 | 368 | 0 | 42 | 0 | 0 |
Shrub | 0 | 0 | 240 | 2143 | 0 | 0 | 0 | 0 | 793 |
Tree | 0 | 0 | 88 | 0 | 1932 | 0 | 0 | 0 | 0 |
Soil | 0 | 0 | 0 | 0 | 0 | 2176 | 2 | 133 | 0 |
Sediment | 0 | 0 | 3 | 0 | 0 | 78 | 2138 | 776 | 0 |
Road | 0 | 0 | 3 | 0 | 0 | 46 | 118 | 1391 | 0 |
Car | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1507 |
Salt Marsh | Grass | Dry Grass | Shrub | Tree | Soil | Sediment | Road | Car | |
---|---|---|---|---|---|---|---|---|---|
Salt marsh | 2250 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14 |
Grass | 0 | 2298 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Dry grass | 39 | 2 | 1920 | 145 | 108 | 2 | 54 | 779 | |
Shrub | 0 | 0 | 236 | 2155 | 0 | 0 | 0 | 0 | 0 |
Tree | 0 | 0 | 141 | 0 | 2192 | 0 | 0 | 0 | 0 |
Soil | 0 | 0 | 0 | 0 | 0 | 2214 | 2 | 78 | 0 |
Sediment | 0 | 0 | 3 | 0 | 0 | 78 | 2230 | 625 | 0 |
Road | 0 | 0 | 0 | 0 | 0 | 6 | 14 | 1597 | 0 |
Car | 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1507 |
Habitat Name | Producer’s Accuracy | User’s Accuracy |
---|---|---|
Salt marsh | 4 | 4.56 |
Grass | 11.3 | −1.68 |
Dry grass | 1.65 | 2.35 |
Shrub | 0.53 | 0.2 |
Tree | −2 | 9.28 |
Soil | 8.95 | 9.48 |
Sediment | 0 | 0 |
Road | 12.83 | −0.62 |
Car | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Collin, A.; James, D.; Gallon, R.; Poizot, E.; Feunteun, E. The Use of Ultra-High Resolution UAV Lidar Infrared Intensity for Enhancing Coastal Cover Classification. Environ. Sci. Proc. 2024, 29, 55. https://doi.org/10.3390/ECRS2023-16610
Collin A, James D, Gallon R, Poizot E, Feunteun E. The Use of Ultra-High Resolution UAV Lidar Infrared Intensity for Enhancing Coastal Cover Classification. Environmental Sciences Proceedings. 2024; 29(1):55. https://doi.org/10.3390/ECRS2023-16610
Chicago/Turabian StyleCollin, Antoine, Dorothée James, Régis Gallon, Emmanuel Poizot, and Eric Feunteun. 2024. "The Use of Ultra-High Resolution UAV Lidar Infrared Intensity for Enhancing Coastal Cover Classification" Environmental Sciences Proceedings 29, no. 1: 55. https://doi.org/10.3390/ECRS2023-16610
APA StyleCollin, A., James, D., Gallon, R., Poizot, E., & Feunteun, E. (2024). The Use of Ultra-High Resolution UAV Lidar Infrared Intensity for Enhancing Coastal Cover Classification. Environmental Sciences Proceedings, 29(1), 55. https://doi.org/10.3390/ECRS2023-16610