Monitoring Forest Dynamics in the Palmira Area of Ecuador Using the Land Trendr and Continuous Change Detection Algorithms †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.4. CCDC Algorithm
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Houghton, R.A.; Byers, B.; Nassikas, A.A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 2015, 5, 1022–1023. [Google Scholar] [CrossRef]
- Sheil, D.; Murdiyarso, D. How forests attract rain: An examination of a new hypothesis. BioScience 2009, 59, 341–347. [Google Scholar] [CrossRef]
- Miura, S.; Amacher, M.; Hofer, T.; San-Miguel-Ayanz, J.; Ernawati; Thackway, R. Protective functions and ecosystem services of global forests in the past quarter-century. For. Ecol. Manag. 2015, 352, 35–46. [Google Scholar] [CrossRef]
- Braatz, S.; Fortuna, S.; Broadhead, J.; Leslie, R. Coastal Protection in the Aftermath of the Indian Ocean Tsunami: What Role for Forests and Trees? FAO: Rome, Italy, 2007; Available online: https://www.fao.org/3/ag127e/ag127e.pdf (accessed on 18 January 2022).
- Cohen, W.B.; Healey, S.P.; Yang, Z.; Zhu, Z.; Gorelick, N. Diversity of algorithm and spectral band inputs improves landsat monitoring of forest disturbance. Remote Sens. 2020, 12, 1673. [Google Scholar] [CrossRef]
- MAE. Programa Nacional de Reforestación con Fines de Conservación Ambiental, Protección de Cuencas Hidrográficas y Beneficios Alternos; Ministerio del Ambiente. 2020. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2020/04/REFORESTACION.pdf (accessed on 18 January 2022).
- Sierra, R.; Calva, O.; Guevara, A. PROAmazonía; Quito. 2021. Available online: https://www.proamazonia.org/wp-content/uploads/2021/06/Deforestacio%CC%81n_Ecuador_com2.pdf (accessed on 19 January 2022).
- Bravo, A. Sistematización de la Experiencia de la Protección Ambiental a Través de la Siembra de Árboles en las Comunidades Rurales de la Parroquia de Palmira, Cantón Guamote. Master’s Thesis, Universidad Politécnica Salesiana, Quito, Ecuador, 2012. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of landsat-7 to landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in Forest Disturbance and recovery using yearly Landsat Time Series: 1. Landtrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Griffiths, P.; Kuemmerle, T.; Kennedy, R.E.; Abrudan, I.V.; Knorn, J.; Hostert, P. Using annual time-series of landsat images to assess the effects of forest restitution in post-socialist Romania. Remote Sens. Environ. 2012, 118, 199–214. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A landsat time series approach to characterize bark beetle and defoliator impacts on tree mortality and surface fuels in conifer forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring coniferous forest biomass change using a landsat trajectory-based approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Kennedy, R. Landtrendr. openMRV. 2011. Available online: http://www.openmrv.org/en/web/guest/-/modules/mrv/modules_2/landtrendr (accessed on 18 March 2022).
- Arévalo, P.; Bullock, E.L.; Woodcock, C.E.; Olofsson, P. A suite of tools for continuous land change monitoring in Google Earth engine. Front. Clim. 2020, 2, 576740. [Google Scholar] [CrossRef]
- PROFAFOR. Beneficios e Impactos Socioeconómicos del Programa de. 2015. Available online: https://nanopdf.com/download/beneficios-e-impactos-socioeconomicos-del-programa-de_pdf (accessed on 3 January 2023).
Parameters | Value | Meaning |
---|---|---|
maxSegments: | 6 | This value indicates the maximum limit of segments allowed for fitting a specific pixel’s temporal series, as detailed in the technical section of this document. |
spikeThreshold: | 0.8 | The spike threshold parameter controls the extent of the filtering, with a value of 1.0 corresponding to no filtering, and lower values corresponding to more aggressive filtering, as explained in the technical section of this paper. |
vertexCountOvershoot: | 3 | This sets the maximum number of candidate vertex years. |
preventOneYearRecovery | True | Prevents the recovery of one year. |
recoveryThreshold | 0.25 | To prevent unrealistic recovery following a disturbance, a value of 1.0 signifies that the constraint is disabled, while a value of 0.25 would mean that segments recovering completely in less than four years (4 = 1/0.25) are not allowed. |
pvalThreshold: | 0.05 | p-value threshold, for finding good models using these criteria based on the p-value parameter. |
bestModelProportion: | 0.75 | Best model proportion. Thus, an adjustment can be made that will allow for choosing a model with more segments as long as it falls within a defined proportion of the best-scoring models. This proportion is set by the best model proportion parameter. For example, a value of 0.75 for the best model proportion would allow us to select a more complex model if its score exceeded 75% of the best model’s score. |
minObservationsNeeded | 6 | Minimum required observations. |
Parameter | Description. |
---|---|
Raster. | The input multidimensional raster layer. |
Bands for temporal masking. | The band IDs of the green band and the SWIR band are used for cloud, cloud shadow, and snow masking. If no band IDs are provided, no masking will occur. The band ID values should be integers separated by spaces. |
Chi-square threshold for change detection. | The chi-square change probability threshold. If an observation’s calculated change probability exceeds this threshold, it is flagged as an anomaly, indicating a potential change event. The default value is 0.99. |
Minimum consecutive anomaly observations. | The minimum number of consecutive anomaly observations that must occur before an event is considered a change. A pixel must be flagged as an anomaly for the specified number of consecutive time periods to be considered a real change. The default value is 6. |
Update adjustment frequency (in years). | The frequency at which the time series model should be updated with new observations. The default option is to update the model once per year. |
Galte, Laime | Palmira Dávalos | Galte, Cuatro Esquinas | Jatun Loma | |
---|---|---|---|---|
Latitude | -2.0749 | -2.06384 | -2.038821 | -2.07128 |
Longitude | -78.7806 | -78.7545 | -78.783493 | -78.81612 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castelo, M.; López, J.; Merino, E.; Buñay, G.; Peñafiel, M.; Villa, R.; Santana, J.; Tipán, E. Monitoring Forest Dynamics in the Palmira Area of Ecuador Using the Land Trendr and Continuous Change Detection Algorithms. Environ. Sci. Proc. 2024, 29, 54. https://doi.org/10.3390/ECRS2023-16703
Castelo M, López J, Merino E, Buñay G, Peñafiel M, Villa R, Santana J, Tipán E. Monitoring Forest Dynamics in the Palmira Area of Ecuador Using the Land Trendr and Continuous Change Detection Algorithms. Environmental Sciences Proceedings. 2024; 29(1):54. https://doi.org/10.3390/ECRS2023-16703
Chicago/Turabian StyleCastelo, Marco, Jorge López, Edgar Merino, Gustavo Buñay, Mayra Peñafiel, Rene Villa, Johanna Santana, and Edwin Tipán. 2024. "Monitoring Forest Dynamics in the Palmira Area of Ecuador Using the Land Trendr and Continuous Change Detection Algorithms" Environmental Sciences Proceedings 29, no. 1: 54. https://doi.org/10.3390/ECRS2023-16703
APA StyleCastelo, M., López, J., Merino, E., Buñay, G., Peñafiel, M., Villa, R., Santana, J., & Tipán, E. (2024). Monitoring Forest Dynamics in the Palmira Area of Ecuador Using the Land Trendr and Continuous Change Detection Algorithms. Environmental Sciences Proceedings, 29(1), 54. https://doi.org/10.3390/ECRS2023-16703