Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air †
Abstract
:1. Introduction
2. The Source of Indoor Radon and Its Concentration Variability
3. The Health Effects of Radon
4. Indoor Radon Risk Assessment and Mitigation—Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009; ISBN 978-92-4-154767-3.
- Appleton, J.D. Radon in Air and Water. In Essentials of Medical Geology: Revised Edition; Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 239–277. ISBN 978-94-007-4375-5. [Google Scholar]
- Riudavets, M.; Garcia de Herreros, M.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.; Conde, C.; Peterson, C.; Nugent, K. Residential Radon Exposure and Cancer. Oncol. Rev. 2022, 16, 558. [Google Scholar] [CrossRef] [PubMed]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Impacts of Exposure to Air Pollution, Radon and Climate Drivers on the COVID-19 Pandemic in Bucharest, Romania: A Time Series Study. Environ. Res. 2022, 212, 113437. [Google Scholar] [CrossRef] [PubMed]
- Madas, B.G.; Boei, J.; Fenske, N.; Hofmann, W.; Mezquita, L. Effects of Spatial Variation in Dose Delivery: What Can We Learn from Radon-Related Lung Cancer Studies? Radiat. Environ. Biophys. 2022, 61, 561–577. [Google Scholar] [CrossRef] [PubMed]
- Maier, A.; Wiedemann, J.; Rapp, F.; Papenfuß, F.; Rödel, F.; Hehlgans, S.; Gaipl, U.S.; Kraft, G.; Fournier, C.; Frey, B. Radon Exposure—Therapeutic Effect and Cancer Risk. Int. J. Mol. Sci. 2020, 22, 316. [Google Scholar] [CrossRef]
- Palmer, J.D.; Prasad, R.N.; Cioffi, G.; Kruchtko, C.; Zaorsky, N.G.; Trifiletti, D.M.; Gondi, V.; Brown, P.D.; Perlow, H.K.; Mishra, M.V.; et al. Exposure to Radon and Heavy Particulate Pollution and Incidence of Brain Tumors. Neuro-Oncology 2023, 25, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, Y.; Chen, C.; Field, R.W.; Kahe, K. Abstract P664: Radon Exposure and Cerebrovascular Disease-A Systematic Review and Meta-Analysis of Observational Studies in Occupational and General Populations. Stroke 2021, 52, AP664. [Google Scholar] [CrossRef]
- Mozzoni, P.; Pinelli, S.; Corradi, M.; Ranzieri, S.; Cavallo, D.; Poli, D. Environmental/Occupational Exposure to Radon and Non-Pulmonary Neoplasm Risk: A Review of Epidemiologic Evidence. Int. J. Environ. Res. Public Health 2021, 18, 10466. [Google Scholar] [CrossRef]
- Hinrichs, A.; Fournier, C.; Kraft, G.; Maier, A. Radon Progeny Adsorption on Facial Masks. Int. J. Environ. Res. Public Health 2022, 19, 11337. [Google Scholar] [CrossRef]
- Čeliković, I.; Pantelić, G.; Vukanac, I.; Krneta Nikolić, J.; Živanović, M.; Cinelli, G.; Gruber, V.; Baumann, S.; Quindos Poncela, L.S.; Rabago, D. Outdoor Radon as a Tool to Estimate Radon Priority Areas—A Literature Overview. Int. J. Environ. Res. Public Health 2022, 19, 662. [Google Scholar] [CrossRef]
- Tokonami, S. Characteristics of Thoron (220Rn) and Its Progeny in the Indoor Environment. Int. J. Environ. Res. Public Health 2020, 17, 8769. [Google Scholar] [CrossRef]
- Degu Belete, G.; Alemu Anteneh, Y. General Overview of Radon Studies in Health Hazard Perspectives. J. Oncol. 2021, 2021, 6659795. [Google Scholar] [CrossRef] [PubMed]
- Bing, S. CR-39 Radon Detector. Nucl. Tracks Radiat. Meas. 1993, 22, 451–454. [Google Scholar] [CrossRef]
- Elío, J.; Petermann, E.; Bossew, P.; Janik, M. Machine Learning in Environmental Radon Science. Appl. Radiat. Isot. 2023, 194, 110684. [Google Scholar] [CrossRef]
- Sá, J.P.; Branco, P.T.; Alvim-Ferraz, M.C.; Martins, F.G.; Sousa, S.I. Radon in Indoor Air: Towards Continuous Monitoring. Sustainability 2022, 14, 1529. [Google Scholar] [CrossRef]
- Nikolopoulos, D.; Kottou, S.; Louizi, A.; Petraki, E.; Vogiannis, E.; Yannakopoulos, P. Factors Affecting Indoor Radon Concentrations of Greek Dwellings through Multivariate Statistics-First Approach. J. Phys. Chem. Biophys. 2014, 4, 145. [Google Scholar] [CrossRef]
- Baltrėnas, P.; Grubliauskas, R.; Danila, V. Seasonal Variation of Indoor Radon Concentration Levels in Different Premises of a University Building. Sustainability 2020, 12, 6174. [Google Scholar] [CrossRef]
- Seftelis, I.; Nicolaou, G.; Trassanidis, S.; Tsagas, F.N. Diurnal Variation of Radon Progeny. J. Environ. Radioact. 2007, 97, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Nikolopoulos, D.; Louizi, A.; Koukouliou, V.; Serefoglou, A.; Georgiou, E.; Ntalles, K.; Proukakis, C. Radon Survey in Greece—Risk Assesment. J. Environ. Radioact. 2002, 63, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, R.; Leonardi, F.; Buresti, G.; Cianfriglia, M.; Cinelli, G.; Gruber, V.; Heinrich, T.; Holmgren, O.; Salvi, F.; Seri, E.; et al. Radon Levels in Dwellings and Workplaces: A Comparison with Data from Some European Countries. J. Eur. Radon Assoc. 2022, 3, 1–13. [Google Scholar] [CrossRef]
- Silva, A.S.; Dinis, M.d.L. Assessment of Indoor Radon Concentration and Time-Series Analysis of Gamma Dose Rate in Three Thermal Spas from Portugal. Environ. Monit. Assess. 2022, 194, 611. [Google Scholar] [CrossRef]
- Kendall, G.M.; Smith, T.J. Doses from Radon and Its Decay Products to Children. J. Radiol. Prot. 2005, 25, 241. [Google Scholar] [CrossRef]
- Lopes, S.I.; Nunes, L.J.R.; Curado, A. Designing an Indoor Radon Risk Exposure Indicator (IRREI): An Evaluation Tool for Risk Management and Communication in the IoT Age. Int. J. Environ. Res. Public Health 2021, 18, 7907. [Google Scholar] [CrossRef]
- Nunes, L.J.; Curado, A.; Lopes, S.I. Understanding Seasonal Indoor Radon Variability from Data Collected with a LoRa-Enabled IoT Edge Device. Appl. Sci. 2023, 13, 4735. [Google Scholar] [CrossRef]
- Nunes, L.J.R.; Curado, A.; Da Graça, L.C.C.; Soares, S.; Lopes, S.I. Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies. Int. J. Environ. Res. Public Health 2022, 19, 3929. [Google Scholar] [CrossRef] [PubMed]
- Tokonami, S. Why Is 220Rn (Thoron) Measurement Important? Radiat. Prot. Dosim. 2010, 141, 335–339. [Google Scholar] [CrossRef]
- Mancini, S.; Vilnitis, M.; Guida, M. A Novel Strategy for the Assessment of Radon Risk Based on Indicators. Int. J. Environ. Res. Public Health 2021, 18, 8089. [Google Scholar] [CrossRef] [PubMed]
- Demoury, C.; Ielsch, G.; Hemon, D.; Laurent, O.; Laurier, D.; Clavel, J.; Guillevic, J. A Statistical Evaluation of the Influence of Housing Characteristics and Geogenic Radon Potential on Indoor Radon Concentrations in France. J. Environ. Radioact. 2013, 126, 216–225. [Google Scholar] [CrossRef]
- Xie, D.; Liao, M.; Wang, H.; Kearfott, K.J. A Study of Diurnal and Short-Term Variations of Indoor Radon Concentrations at the University of Michigan, USA and Their Correlations with Environmental Factors. Indoor Built Environ. 2017, 26, 1051–1061. [Google Scholar] [CrossRef]
- Burghele, B.; Botoș, M.; Beldean-Galea, S.; Cucoș, A.; Catalina, T.; Dicu, T.; Dobrei, G.; Florică, Ș.; Istrate, A.; Lupulescu, A.; et al. Comprehensive Survey on Radon Mitigation and Indoor Air Quality in Energy Efficient Buildings from Romania. Sci. Total Environ. 2021, 751, 141858. [Google Scholar] [CrossRef] [PubMed]
- Kalimeri, K.K.; Saraga, D.E.; Lazaridis, V.D.; Legkas, N.A.; Missia, D.A.; Tolis, E.I.; Bartzis, J.G. Indoor Air Quality Investigation of the School Environment and Estimated Health Risks: Two-Season Measurements in Primary Schools in Kozani, Greece. Atmos. Pollut. Res. 2016, 7, 1128–1142. [Google Scholar] [CrossRef]
- Synnefa, A.; Polichronaki, E.; Papagiannopoulou, E.; Santamouris, M.; Mihalakakou, G.; Doukas, P.; Siskos, P.A.; Bakeas, E.; Dremetsika, A.; Geranios, A.; et al. International Journal of Ventilation An Experimental Investigation of the Indoor Air Quality in Fifteen School Buildings in Athens, Greece An Experimental Investigation of the Indoor Air Quality in Fifteen School Buildings in Athens, Greece. Int. J. Vent. 2003, 2, 185–201. [Google Scholar] [CrossRef]
- Kubiak, J.A.; Basińska, M. Analysis of the Radon Concentration in Selected Rooms of Buildings in Poznan County. Atmosphere 2022, 13, 1664. [Google Scholar] [CrossRef]
- Merrin, Z.; Francisco, P.; Gloss, S. Agreement in Radon Variability Between Proximate Houses; American Society of Heating, Refrigeration and Air Conditioning Engineers, Inc.: Peachtree Corners, GA, USA, 2022; pp. 1–3. [Google Scholar]
- Marsh, J.W.; Tomášek, L.; Laurier, D.; Harrison, J.D. Effective dose coefficients for radon and progeny: A review of icrp and unscear values. Radiat. Prot. Dosim. 2021, 195, 1–20. [Google Scholar] [CrossRef]
- Lee, M.E.; Lichtenstein, E.; Andrews, J.A.; Glasgow, R.E.; Hampson, S.E. Radon-Smoking Synergy: A Population-Based Behavioral Risk Reduction Approach. Prev. Med. 1999, 29, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Bersimbaev, R.I.; Bulgakova, O. The Health Effects of Radon and Uranium on the Population of Kazakhstan. Genes Environ. 2015, 37, 18. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Harley, N.H. A Review of Indoor and Outdoor Radon Equilibrium Factors—Part I: 222Rn. Health Phys. 2018, 115, 490–499. [Google Scholar] [CrossRef]
- Chen, J.; Harley, N.H. A Review of Indoor and Outdoor Radon Equilibrium Factors—Part II: 220Rn. Health Phys. 2018, 115, 500–506. [Google Scholar] [CrossRef]
- Wang, J.; Meisenberg, O.; Chen, Y.; Karg, E.; Tschiersch, J. Mitigation of Radon and Thoron Decay Products by Filtration. Sci. Total Environ. 2011, 409, 3613–3619. [Google Scholar] [CrossRef]
- Wang, X.-W.; Yan, T.; Wan, J.; Zhao, L.-F.; Tu, Y. Zeolitic Imidazolate Framework-8 as a Nanoadsorbent for Radon Capture. Nucl. Sci. Tech. 2016, 27, 9. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batris, E.; Nikolopoulos, D.; Valais, I.; Moustris, K. Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air. Environ. Sci. Proc. 2023, 26, 115. https://doi.org/10.3390/environsciproc2023026115
Batris E, Nikolopoulos D, Valais I, Moustris K. Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air. Environmental Sciences Proceedings. 2023; 26(1):115. https://doi.org/10.3390/environsciproc2023026115
Chicago/Turabian StyleBatris, Evangelos, Dimitrios Nikolopoulos, Ioannis Valais, and Konstantinos Moustris. 2023. "Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air" Environmental Sciences Proceedings 26, no. 1: 115. https://doi.org/10.3390/environsciproc2023026115
APA StyleBatris, E., Nikolopoulos, D., Valais, I., & Moustris, K. (2023). Radon Assessment: An Overview of Concentration Variability and Synergies with Other Health Risk Factors in Indoor Air. Environmental Sciences Proceedings, 26(1), 115. https://doi.org/10.3390/environsciproc2023026115