Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seeding Sludges and Chemicals
2.2. Experimental Setup
2.3. Calculation of Methane and Carbon Dioxide Yields Produced by the Anaerobic Batches
2.4. Analytical Methodology for Quantification of BPA
2.5. Calculation of the BPA Concentration
2.6. Statistical Analysis
3. Results and Discussion
3.1. Bisphenol a Fragmentation and Matrix-Matched Calibration
3.2. Biogas Production of Various Anaerobic Sludges in the Presence of BPA
3.3. Endogenous Concentrations of BPA in Various Sludge Types
3.4. BPA Removal under Anaerobic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zielińska, M.; Wojnowska-Baryła, I.; Cydzik-Kwiatkowska, A. Bisphenol A Removal from Water and Wastewater; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef] [PubMed]
- Malm, J. Inclusion of Substances of Very High Concern in the Candidate List for Eventual Inclusion in Annex XIV; European Chemicals Agency: Helsinki, Finland, 2017.
- European Chemicals Agency. SVHC Support Document—4,4′-Isopropylidenediphenol; European Chemicals Agency: Helsinki, Finland, 2017.
- Global Industry Analysts. Global Bisphenol A Industry; Global Industry Analysts Inc.: San Jose, CA, USA, 2021. [Google Scholar]
- Pivnenko, K.; Pedersen, G.A.; Eriksson, E.; Astrup, T. Bisphenol A and its structural analogues in household waste paper. Waste Manag. 2015, 44, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Gehring, M.; Tennhardt, L.; Vogel, D.; Weltin, D.; Bilitewski, B. Sources of Bisphenol A in Wastewater and Sewage Sludge. In Matter and Particle Transport in Surface and Subsurface Flow, Proceedings of the 3rd International Conference on Water Resources and Environment Research; Schmitz, G.H., Ed.; Pirna: Dresden, Germany, 2002; Volume 28/2, pp. 111–114. [Google Scholar]
- US EPA. Advanced notice of proposed rulemaking: Testing of bisphenol A. Fed. Reg. 2011, 76, 44535–44547. [Google Scholar]
- Mohapatra, D.; Brar, S.; Tyagi, R.; Surampalli, R. Physico-chemical pre-treatment and biotransformation of wastewater and wastewater Sludge—Fate of bisphenol A. Chemosphere 2010, 78, 923–941. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef] [Green Version]
- Sosa-Ferrera, Z.; Mahugo-Santana, C.; Santana-Rodríguez, J.J. Analytical Methodologies for the Determination of Endocrine Disrupting Compounds in Biological and Environmental Samples. BioMed Res. Int. 2013, 2013, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.B.; Peart, T.E. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. J. Assoc. Off. Anal. Chem. 2000, 83, 290–298. [Google Scholar] [CrossRef] [Green Version]
- Urase, T.; Kikuta, T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process. Water Res. 2005, 39, 1289–1300. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, Y.; Zhang, C.; Zeng, Q.; Zhou, Q. Sorption and degradation of bisphenol A by aerobic activated sludge. J. Hazard. Mater. 2008, 155, 305–311. [Google Scholar] [CrossRef]
- Im, J.; Löffler, F.E. Fate of Bisphenol A in Terrestrial and Aquatic Environments. Environ. Sci. Technol. 2016, 50, 8403–8416. [Google Scholar] [CrossRef]
- Li, G.; Zu, L.; Wong, P.K.; Hui, X.; Lu, Y.; Xiong, J.; An, T. Biodegradation and detoxification of bisphenol A with one newly-isolated strain Bacillus sp. GZB: Kinetics, mechanism and estrogenic transition. Bioresour. Technol. 2012, 114, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, Z.; He, T.; Dai, Y.; Xie, S. Sediment Bacterial Communities Associated with Anaerobic Biodegradation of Bisphenol A. Microb. Ecol. 2014, 70, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Limam, I.; Mezni, M.; Guenne, A.; Madigou, C.; Driss, M.R.; Bouchez, T.; Mazéas, L. Evaluation of biodegradability of phenol and bisphenol A during mesophilic and thermophilic municipal solid waste anaerobic digestion using 13C-labeled contaminants. Chemosphere 2013, 90, 512–520. [Google Scholar] [CrossRef]
- Yang, S.; McDonald, J.; Hai, F.; Price, W.E.; Khan, S.; Nghiem, L.D. The fate of trace organic contaminants in sewage sludge during recuperative thickening anaerobic digestion. Bioresour. Technol. 2017, 240, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.V.; Wickham, R.; Xie, S.; McDonald, J.; Khan, S.; Ngo, H.H.; Guo, W.; Nghiem, L.D. The fate of trace organic contaminants during anaerobic digestion of primary sludge: A pilot scale study. Bioresour. Technol. 2018, 256, 384–390. [Google Scholar] [CrossRef]
- Choi, Y.J.; Nies, L.F.; Lee, L.S. Persistence of three bisphenols and other trace organics of concern in anaerobic sludge under methanogenic conditions. Environ. Technol. 2019, 42, 1373–1382. [Google Scholar] [CrossRef]
- Gehring, M. Verhalten der Endokrin Wirksamen Substanz Bisphenol A bei der Kommunalen Abwasserentsorgung (Behaviour of the Endocrine Disrupting Substance Bisphenol A in Municipal Wastewater Disposal). Ph.D. Thesis, Technische Universität Dresden, Dresden, Germany, 2004. [Google Scholar]
- Weltin, D.; Gehring, M.; Tennhardt, L.; Vogel, D.; Bilitewski, B. Occurrence and Fate of Bisphenol A during Wastewater and Sewage Sludge Treatment in Selected German Wastewater Treatment Plants; American Water Works Association: Denver, CO, USA, 2002. [Google Scholar]
- Guerra, P.; Kim, M.; Teslic, S.; Alaee, M.; Smyth, S. Bisphenol-A removal in various wastewater treatment processes: Operational conditions, mass balance, and optimization. J. Environ. Manag. 2015, 152, 192–200. [Google Scholar] [CrossRef]
- Gonzalez-Gil, L.; Mauricio-Iglesias, M.; Serrano, D.; Lema, J.M.; Carballa, M. Role of methanogenesis on the biotransformation of organic micropollutants during anaerobic digestion. Sci. Total. Environ. 2018, 622–623, 459–466. [Google Scholar] [CrossRef]
- Samaras, V.G.; Stasinakis, A.S.; Thomaidis, N.; Mamais, D.; Lekkas, T.D. Fate of selected emerging micropollutants during mesophilic, thermophilic and temperature co-phased anaerobic digestion of sewage sludge. Bioresour. Technol. 2014, 162, 365–372. [Google Scholar] [CrossRef]
- Wijekoon, K.C.; McDonald, J.; Khan, S.; Hai, F.; Price, W.E.; Nghiem, L.D. Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor. Bioresour. Technol. 2015, 189, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Leal, L.H.; Vieno, N.; Temmink, H.; Zeeman, G.; Buisman, C.J.N. Occurrence of Xenobiotics in Gray Water and Removal in Three Biological Treatment Systems. Environ. Sci. Technol. 2010, 44, 6835–6842. [Google Scholar] [CrossRef]
- Brandt, E.M.; de Queiroz, F.B.; Afonso, R.J.; Aquino, S.; Chernicharo, C.A. Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems. J. Environ. Manag. 2013, 128, 718–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias, A.; Alvarino, T.; Allegue, T.; Suárez, S.; Garrido, J.; Omil, F. An innovative wastewater treatment technology based on UASB and IFAS for cost-efficient macro and micropollutant removal. J. Hazard. Mater. 2018, 359, 113–120. [Google Scholar] [CrossRef]
- Moya-Llamas, M.J.; Trapote, A.; Prats, D. Removal of micropollutants from urban wastewater using a UASB reactor coupled to a MBR at different organic loading rates. Urban Water J. 2018, 15, 437–444. [Google Scholar] [CrossRef]
- Monsalvo, V.M.; McDonald, J.; Khan, S.; Le-Clech, P. Removal of trace organics by anaerobic membrane bioreactors. Water Res. 2014, 49, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Gil, L.; Mauricio-Iglesias, M.; Carballa, M.; Lema, J.M. Why are organic micropollutants not fully biotransformed? A mechanistic modelling approach to anaerobic systems. Water Res. 2018, 142, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, R.B.; Gonzalez-Gil, L.; Londoño, Y.A.; Zaiat, M.; Carballa, M.; Lema, J.M. Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants. J. Hazard. Mater. 2019, 389, 121888. [Google Scholar] [CrossRef]
- Harb, M.; Lou, E.; Smith, A.L.; Stadler, L.B. Perspectives on the fate of micropollutants in mainstream anaerobic wastewater treatment. Curr. Opin. Biotechnol. 2019, 57, 94–100. [Google Scholar] [CrossRef]
- Lim, M.; Patureau, D.; Heran, M.; Lesage, G.; Kim, J. Removal of organic micropollutants in anaerobic membrane bioreactors in wastewater treatment: Critical review. Environ. Sci. Water Res. Technol. 2020, 6, 1230–1243. [Google Scholar] [CrossRef]
- Gonzalez-Gil, L.; Carballa, M.; Lema, J.M. Removal of organic micro-pollutants by anaerobic microbes and enzymes. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 397–426. [Google Scholar] [CrossRef]
- Abendroth, C.; Vilanova, C.; Günther, T.; Luschnig, O.; Porcar, M. Eubacteria and archaea communities in seven mesophile anaerobic digester plants in Germany. Biotechnol. Biofuels 2015, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- VDI-Gesellschaft Energie und Umwelt. Fermentation of Organic Materials: Characterisation of the Substrate, Sampling, Collection of Material Data, Fermentation Tests; Verein Deutscher Ingenieure e.V.: Freiburg im Breisgau, Germany, 2016; Volume 4630. [Google Scholar]
- Buswell, A.M.; Mueller, H.F. Mechanism of Methane Fermentation. Ind. Eng. Chem. 1952, 44, 550–552. [Google Scholar] [CrossRef]
- Chandler, J.A.; Jewell, W.J.; Gossett, J.M.; Vansoest, P.J.; Robertson, J.B. Predicting Methane Fermentation Biodegradability. Biotechnol. Bioeng. 1980, 22, 93–107. [Google Scholar]
- Nielfa, A.; Cano, R.; Fdz-Polanco, M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol. Rep. 2014, 5, 14–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reichenbächer, M.; Einax, J.W. Challenges in Analytical Quality Assurance; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- Hübschmann, H.-J. Handbook of GC/MS: Fundamentals and Applications, 2nd ed.; Wiley: Hoboken, NJ, USA, 2009; p. 719. [Google Scholar]
- Cunha, S.; Almeida, C.; Mendes, E.; Fernandes, J. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid–liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry. Food Addit. Contam. Part A 2011, 28, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Huang, Q.-S.; Sun, J.; Wang, J.-Y.; Wu, S.-L.; Ni, B.-J. Polyvinyl Chloride Microplastics Affect Methane Production from the Anaerobic Digestion of Waste Activated Sludge through Leaching Toxic Bisphenol-A. Environ. Sci. Technol. 2019, 53, 2509–2517. [Google Scholar] [CrossRef]
- Fürhacker, M.; Scharf, S.; Weber, H. Bisphenol A: Emissions from point sources. Chemosphere 2000, 41, 751–756. [Google Scholar] [CrossRef]
- Petrie, B.; Lopardo, L.; Proctor, K.; Youdan, J.; Barden, R.; Kasprzyk-Hordern, B. Assessment of bisphenol-A in the urban water cycle. Sci. Total. Environ. 2018, 650, 900–907. [Google Scholar] [CrossRef]
- Munn, S.; Allanou, R.; Aschberger, K.; Berthault, F.; De Bruijn, J.; Musset, C.; O’Connor, S.; Pakalin, S.; Pellegrini, G.; Scheer, S.; et al. European Union Risk Assessment Report. Bisphenol A. CAS No. 80-05-EINECS No. 201-245-EUR 20843 EN.; JRC26023; Office for Official Publications of the European Communities: Luxembourg, 2003. [Google Scholar]
- Geens, T.; Apelbaum, T.Z.; Goeyens, L.; Neels, H.; Covaci, A. Intake of bisphenol A from canned beverages and foods on the Belgian market. Food Addit. Contam. Part A 2010, 27, 1627–1637. [Google Scholar] [CrossRef]
- Geens, T.; Goeyens, L.; Kannan, K.; Neels, H.; Covaci, A. Levels of bisphenol-A in thermal paper receipts from Belgium and estimation of human exposure. Sci. Total. Environ. 2012, 435–436, 30–33. [Google Scholar] [CrossRef]
- York, D.; Evensen, N.M.; Martinez, M.L.; Delgadob, J.D.B. Unified equations for the slope, intercept, and standard errors of the best straight line. Am. J. Phys. 2004, 72, 367–375. [Google Scholar] [CrossRef]
- Llompart, M.; Celeiro, M.; Dagnac, T. Microwave-assisted extraction of pharmaceuticals, personal care products and industrial contaminants in the environment. TrAC Trends Anal. Chem. 2019, 116, 136–150. [Google Scholar] [CrossRef]
- Dorival-García, N.; Zafra-Gómez, A.; Navalón, A.; Vílchez, J. Analysis of bisphenol A and its chlorinated derivatives in sewage sludge samples. Comparison of the efficiency of three extraction techniques. J. Chromatogr. A 2012, 1253, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schink, B.; Stams, A.J.M. Syntrophism among Prokaryotes. In The Prokaryotes: Volume 2: Ecophysiology and Biochemistry; Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Springer: New York, NY, USA, 2006; pp. 309–335. [Google Scholar]
- Heider, J.; Fuchs, G. Anaerobic Metabolism of Aromatic Compounds. JBIC J. Biol. Inorg. Chem. 1997, 243, 577–596. [Google Scholar] [CrossRef] [PubMed]
- Thiele, B.; Rieder, O.; Golding, B.T.; Müller, M.; Boll, M. Mechanism of Enzymatic Birch Reduction: Stereochemical Course and Exchange Reactions of Benzoyl-CoA Reductase. J. Am. Chem. Soc. 2008, 130, 14050–14051. [Google Scholar] [CrossRef]
- Schink, B.; Philipp, B.; Müller, J. Anaerobic Degradation of Phenolic Compounds. Naturwissenschaften 2000, 87, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Kyoto Encyclopedia of Genes and Genomes. Enzyme: 1.3.7.8 Benzoyl-CoA Reductase. Available online: https://www.genome.jp/dbget-bin/www_bget?ec:1.3.7.8 (accessed on 23 February 2021).
Experimental Setup | Sample/Inoculum | BPA Change | Study |
---|---|---|---|
Sample of 6 German WWTPs | Anaerobic digester | +68% | [22] |
Sample of 83 Canadian WWTPs | Anaerobic digester | +50% | [24] |
Semi-continuous, 37 °C, stirred, Germany | Digested sludge | +180 ± 113% (20 d) | [23] |
Semi-continuous with recuperative thickening, 35 °C, recirculated, Australia. | Digested sludge | 0% (30 d) | [19] |
Semi-continuous, 35 °C, stirred, Australia | Digested sludge | 0% (20 d) | [20] |
Buffer solution batch, 25 °C, five days of incubation before BPA addition, daily shaking, USA | Digested sludge | 0% (28 d) | [21] |
Carbonate buffer solution batch, 35 and 55 °C, not stirred, 45 days of incubation before BPA addition, France | Digested sludge | 0% (327 d) | [18] |
Semi-continuous, 37 °C, stirred, 130 days of incubation before BPA addition, Spain | Digested sludge | −39 ± 8% (20 d) | [25] |
Semi-continuous, 37 and 55 °C, stirred, 20 days of incubation before BPA addition, Greece | Digested sludge | −80 ± 15% (20 d) | [26] |
Continuous, anaerobic membrane bioreactor, 35 °C, recirculated, 4 months of incubation before BPA addition, Australia | Digested sludge | −99.9 ± 0.0% (4 d) | [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardegen, J.; Braeutigam, P.; Abendroth, C.; Wichard, T. Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges. Pollutants 2021, 1, 194-206. https://doi.org/10.3390/pollutants1040016
Hardegen J, Braeutigam P, Abendroth C, Wichard T. Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges. Pollutants. 2021; 1(4):194-206. https://doi.org/10.3390/pollutants1040016
Chicago/Turabian StyleHardegen, Justus, Patrick Braeutigam, Christian Abendroth, and Thomas Wichard. 2021. "Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges" Pollutants 1, no. 4: 194-206. https://doi.org/10.3390/pollutants1040016
APA StyleHardegen, J., Braeutigam, P., Abendroth, C., & Wichard, T. (2021). Bisphenol A: Quantification in Complex Matrices and Removal by Anaerobic Sludges. Pollutants, 1(4), 194-206. https://doi.org/10.3390/pollutants1040016