Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation
3. Results
3.1. Solid Phase Extraction Procedures
3.2. LC-MS Instrumentation
3.3. Method Validation and Quality Control
3.4. Analyses and Application to Environmental Samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pinion, C., Jr.; Hisel, J.D. Public Health Needs the National Environmental Health Science and Protection Accreditation Council and the Council on Education for Public Health. J. Environ. Health 2020, 82, 26–28. [Google Scholar]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 Concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals.
- Barreca, S.; Orecchio, S.; Pace, A. Photochemical sample treatment for extracts clean up in PCB analysis from sediments. Talanta 2013, 103, 349–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barreca, S.; Busetto, M.; Vitelli, M.; Colzani, L.; Clerici, L.; Dellavedova, P. Online solid-phase extraction LC-MS/MS: A rapid and valid method for the determination of perfluorinated compounds at sub ng·L−1 Level in natural water. J. Chem. 2018, 2018, 3780825. [Google Scholar] [CrossRef] [Green Version]
- Bergamasco, A.; Culotta, L.; De Stefano, C.; Orecchio, S.; Sammartano, S.; Barreca, S. Composition, distribution, and sources of polycyclic aromatic hydrocarbons in sediments of the Gulf of Milazzo (Mediterranean Sea, Italy). Polycycl. Aromat. Compd. 2014, 34, 397–424. [Google Scholar] [CrossRef]
- Orecchio, S.; Fiore, M.; Barreca, S.; Vara, G. Volatile profiles of emissions from different activities analyzed using canister samplers and gas chromatography-mass spectrometry (GC/MS) analysis: A case study. Int. J. Environ. Res. Public Health 2017, 14, 195. [Google Scholar] [CrossRef] [Green Version]
- Directive 2008/105/EC of 16 December 2008 on Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/ECC, 86/280/ECC and Amending Directive 2000/60/EC.
- Todo, K.; Sato, K. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Environ. Res. Q. 2002, 66–106. [Google Scholar]
- Decision, E.U. Commission implementing decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Unionwide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Off. J. Eur. Union L. 2015, 78, 40–42. [Google Scholar]
- Loos, R.; Marinov, D.; Sanseverino, I.; Lettieri, T. Analytical methods for substances in the Watch List under the Water Framework Directive. In Proceedings of the JRC Conference and Workshop Reports, Ispra, Italy, 1–2 March 2018. [Google Scholar]
- Implementing decision 2018/840—Watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC repealing Commission Implementing Decision (EU) 2015/495 (notified under document C (2018) 3362).
- Unutkan, T.; Bakırdere, S.; Keyf, S. Development of an analytical method for the determination of amoxicillin in commercial drugs and wastewater samples, and assessing its stability in simulated gastric digestion. J. Chromatogr. Sci. 2018, 56, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Prutthiwanasan, B.; Phechkrajang, C.; Suntornsuk, L. Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water. Talanta 2016, 159, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Borrull, J.; Colom, A.; Fabregas, J.; Borrull, F.; Pocurull, E. Liquid chromatography tandem mass spectrometry determination of 34 priority and emerging pollutants in water from the influent and effluent of a drinking water treatment plant. J. Chromatogr. A 2020, 1621, 461090. [Google Scholar] [CrossRef] [PubMed]
- Jafari Ozumchelouei, E.; Hamidian, A.H.; Zhang, Y.; Yang, M. Physicochemical properties of antibiotics: A review with an emphasis on detection in the aquatic environment. Water Environ. Res. 2020, 92, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; Busetto, M.; Colzani, L.; Clerici, L.; Daverio, D.; Dellavedova, P.; Ubaldi, V. Determination of estrogenic endocrine disruptors in water at sub-ng L−1 levels in compliance with Decision 2015/495/EU using offline-online solid phase extraction concentration coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2019, 147, 1186–1191. [Google Scholar] [CrossRef]
- Dabbagh, M.S.; Farajzadeh, M.A. Introduction of a new procedure for the synthesis of polysulfone magnetic nanoparticles and their application in magnetic solid phase extraction for the extraction of some pesticides from fruit and vegetable juices. Microchem. J. 2020, 158, 105238. [Google Scholar] [CrossRef]
- Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. SANTE/11945/2015 Supersedes SANCO/12571/2013 Implemented by 01/01/2016.
- UNI CEI EN ISO/IEC 17025:2018.
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Gusmaroli, L.; Insa, S.; Petrovic, M. Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU “Watch list”. Anal. Bioanal. Chem. 2018, 410, 4165–4176. [Google Scholar] [CrossRef] [PubMed]
- Dolar, D.; Gros, M.; Rodriguez-Mozaz, S.; Moreno, J.; Comas, J.; Rodriguez-Roda, I.; Barceló, D. Removal of emerging contaminants from municipal wastewater with an integrated membrane system, MBRRO. J. Hazard. Mater. 2012, 239–240, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999, 225, 109–118. [Google Scholar] [CrossRef]
Name of Substance/Group of Substances | CAS Number | Maximum Acceptable Method Detection Limit (ng/L) |
---|---|---|
17-α-ethinylestradiol (EE2) | 57-63-6 | 0.035 |
17-β-estradiol (E2), Estrone (E1) | 50-28-2, 53-16-7 | 0.4 |
Macrolide antibiotics (1) | 19 | |
Methiocarb | 2032-65-7 | 2 |
Neonicotinoids (2) | 8.3 | |
Metaflumizone | 139968-49-3 | 65 |
Amoxicillin | 26787-78-0 | 78 |
Ciprofloxacin | 85721-33-1 | 89 |
Station Code | Type | Italian Region |
---|---|---|
WL_S1 | RW | Valle d’Aosta |
WL_S2 | RW | Piedmont |
WL_S3 | RW | Piedmont |
WL_S4 | RW | Lombardy |
WL_S5 | RW | Trentino Alto Adige (Trento) |
WL_S6 | RW | Liguria |
WL_S7 | RW | Tuscany |
WL_S8 | RW | Umbria |
WL_S9 | RW | Molise |
WL_S10 | RW | Campania |
WL_S11 | RW | Calabria (only in 2020) |
Italian Region | Sampling Sites | Sampling Campaign (2019 and 2020) | WL Analyses (2019 and 2020) |
---|---|---|---|
Campania | 1 | 3 | 30 |
Liguria | 1 | 3 | 30 |
Lombardy | 1 | 3 | 30 |
Molise | 1 | 3 | 30 |
Piedmont | 2 | 3 | 45 |
Tuscany | 1 | 3 | 30 |
Trentino Alto Adige | 1 | 3 | 30 |
(Trento) | |||
Umbria | 1 | 3 | 30 |
Valle D’Aosta | 1 | 3 | 30 |
Calabria | 1 | 1 | 15 |
Total | 11 | 28 | 300 |
Method Steps | Eluent Used | Exhaust Line or Sample Line |
---|---|---|
Condition SPE Disk | 10 mL Acetonitrile | Exhaust line |
Load Sample | 100 mL samples | Sample line |
Elute Sample Container | 25 mL Acetonitrile | Sample line |
Air Dry Disk Timer | 30 s by nitrogen | Sample line |
Pause | ||
Clean System | 20 mL Methanol/water 50/50 | Exhaust line |
Parameters | Unit | Value |
---|---|---|
Curtain Gas (CUR) | psi | 30 |
Collision Gas | - | Medium |
Ion Spray Voltage (IS) | V | 4500 |
Temperature TEM (GS2) | °C | 450 |
Ion Source Gas (GS1) | psi | 55 |
Ion Source Gas (GS2) | psi | 60 |
Analyte | Q1 Precursion Ion [M + H]+ (m/z) | Q3 Product Ion (m/z) | Declustering Potential (DP) | Entrance Potential (EP) | Collision Energy (CE) | Collision Exit Potential (CXP) |
---|---|---|---|---|---|---|
Acetamiprid-1 | 223.1 | 126.1 | 35 | 10 | 31 | 10 |
Acetamiprid-2 | 223.1 | 56.1 | 35 | 10 | 27 | 10 |
Azithromycin-1 | 749.5 | 591.3 | 40 | 10 | 46 | 12 |
Azithromycin-2 | 749.5 | 158.1 | 40 | 10 | 46 | 12 |
Clothianidin-1 | 250.1 | 168.9 | 20 | 10 | 19 | 10 |
Clothianidin-2 | 250.1 | 132 | 20 | 10 | 23 | 13 |
Clarithromycin-1 | 748.5 | 590 | 40 | 10 | 30 | 10 |
Clarithromycin-2 | 748.5 | 158 | 40 | 10 | 30 | 10 |
Metaflumizone-1 | 507 | 178 | 70 | 10 | 35 | 10 |
Metaflumizone-2 | 507 | 116 | 70 | 10 | 30 | 10 |
Methiocarb-1 | 226.2 | 169 | 30 | 10 | 14 | 10 |
Methiocarb-2 | 226.2 | 121 | 30 | 10 | 25 | 10 |
Erythromycin-1 | 734.5 | 576 | 60 | 10 | 30 | 10 |
Erythromycin-2 | 734.5 | 158.3 | 60 | 10 | 30 | 10 |
Imidacloprid-1 | 256.2 | 209 | 61 | 10 | 23 | 16 |
Imidaclorpid-2 | 256.2 | 175.2 | 61 | 10 | 23 | 14 |
Amoxicillin-1 | 366 | 208 | 25 | 10 | 16 | 10 |
Amoxicillin-2 | 366 | 114 | 25 | 10 | 16 | 10 |
Thiacloprid-1 | 253.1 | 126.1 | 40 | 10 | 29 | 10 |
Thiacloprid-2 | 253.1 | 186 | 40 | 10 | 23 | 10 |
Thiamethoxam-1 | 292 | 211 | 70 | 10 | 17 | 10 |
Thiamethoxam-2 | 292 | 181 | 70 | 10 | 30 | 10 |
Ciprofloxacin-1 | 332 | 288 | 27 | 10 | 34 | 10 |
Ciprofloxacin-2 | 332 | 245 | 27 | 10 | 31 | 10 |
Time (min) | Flow (mL/min) | % Water + 0.02% in Formic Acid | % Acetonitrile |
---|---|---|---|
0.0 | 0.35 | 90 | 10 |
0.1 | 0.35 | 90 | 10 |
9.0 | 0.35 | 2 | 98 |
10.0 | 0.35 | 2 | 98 |
10.1 | 0.35 | 90 | 10 |
12.0 | 0.35 | 90 | 10 |
Analyte | Spiked Sample Concentration ng/L | Obtained Value (ng/L) | Accuracy% | CV% |
---|---|---|---|---|
Acetamiprid | 20 | 18.92 | 94.6 | 5.597 |
50 | 58.30 | 116.6 | 4.77 | |
100 | 111 | 111.6 | 11.2 | |
250 | 221 | 88.4 | 5.90 | |
Clothianidin | 20 | 24.7 | 123.7 | 10.7 |
50 | 46.23 | 92.45 | 9.06 | |
100 | 104.0 | 104.0 | 10.3 | |
250 | 220 | 88.0 | 6.49 | |
Imidacloprid | 20 | 18.69 | 93.47 | 7.98 |
50 | 50.86 | 101.7 | 11.9 | |
100 | 97.32 | 97.32 | 4.57 | |
250 | 189 | 75.60 | 2.30 | |
Methiocarb | 20 | 21.11 | 105.6 | 7.56 |
50 | 56.05 | 112.1 | 6.45 | |
100 | 101.9 | 101.9 | 6.35 | |
250 | 216.86 | 86.74 | 3.55 | |
Thiacloprid | 20 | 22.5 | 112.5 | 8.91 |
50 | 54.10 | 108.2 | 5.30 | |
100 | 107.3 | 107.3 | 5.70 | |
250 | 232.30 | 92.92 | 3.41 | |
Thiamethoxam | 20 | 19.649 | 98.25 | 10.2 |
50 | 51.261 | 102.2 | 9.88 | |
100 | 88.24 | 88.24 | 7.80 | |
250 | 189.0 | 75.61 | 6.70 | |
Methiocarb | 2 | 2.229 | 111.5 | 0.19 |
50 | 44.71 | 89.42 | 6.42 | |
100 | 104.50 | 104.5 | 2.73 | |
250 | 224.7 | 96.66 | 81.7 | |
Metaflumizone | 50 | 46.487 | 92.97 | 18.3 |
100 | 87.74 | 87.74 | 18.0 | |
250 | 193.1 | 77.22 | 13.6 | |
Amoxicillin | 100 | 82.87 | 82.87 | 6.66 |
250 | 203.83 | 81.53 | 7.50 | |
500 | 448.7 | 89.75 | 6.09 | |
Ciprofloxacin | 50 | 50.86 | 96.58 | 11.9 |
100 | 92.94 | 92.94 | 13.7 | |
250 | 220 | 88.0 | 6.49 | |
Azithromycin | 50 | 48.70 | 97.40 | 8.49 |
100 | 82.88 | 82.88 | 6.55 | |
250 | 216.7 | 86.66 | 7.97 | |
Clarithromycin | 50 | 43.86 | 87.70 | 9.95 |
100 | 80.12 | 80.12 | 6.11 | |
250 | 210 | 83.98 | 6.63 | |
Erythromycin | 50 | 48.288 | 96.58 | 7.19 |
100 | 93.706 | 93.70 | 15.93 | |
250 | 221 | 88.55 | 9.00 |
Analyte | LOQ Considering 10 × Standard Deviations (Sr) of Signal at First Calibration Level (ng/L) | Signal/Noise at LOQ Levels |
---|---|---|
Acetamiprid | 5 | 227 |
Clothianidin | 5 | 59 |
Imidacloprid | 5 | 82 |
Methiocarb | 2 | 26 |
Thiacloprid | 5 | 163 |
Thiamethoxam | 5 | 41 |
Azithromycin | 10 | 335 |
Clarithromycin | 10 | 560 |
Erythromycin | 10 | 60 |
Metaflumizone | 50 | 990 |
Amoxicillin | 50 | 22 |
Ciprofloxacin | 50 | 66 |
WL Sampling Site | WL_S10 | WL_S6 | WL_S4 | WL_S3 | WL_S2 | WL_S7 | WL_S5 | WL_S8 | WL_S1 | WL_S9 |
---|---|---|---|---|---|---|---|---|---|---|
EE2 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | |
E2 | <0.10 | 0.81 | 2.66 | 0.32 | <0.10 | <0.10 | 0.81 | 0.21 | <0.10 | |
E1 | 0.16 | 1.89 | 7.98 | 0.70 | 2.40 | 0.23 | 1.18 | 0.27 | 0.54 | |
Erythromycin | <10 | <10 | <10 | <10 | 38 | <10 | <10 | <10 | <10 | |
Clarithromycin | 25 | 38 | 164 | <10 | 84 | 12 | 21 | 60 | <10 | |
Azithromycin | 19 | 18 | 261 | <10 | 37 | 28 | <10 | 144 | <10 | |
Methiocarb | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | |
Imidacloprid | <5 | 178 | 12 | <5 | 81 | <5 | <5 | <5 | <5 | |
Thiacloprid | <5 | <5 | <5 | <5 | 29 | <5 | <5 | <5 | <5 | |
Thiamethoxam | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
Clothianidin | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | |
Acetamiprid | <5 | 115 | <5 | <5 | 11 | <5 | <5 | <5 | <5 | |
Metaflumizone | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | |
Amoxicillyn | 56 | <50 | 134 | <50 | <50 | <50 | <50 | 65 | <50 | |
Ciprofloxacin | 182 | <50 | <50 | <50 | <50 | 59 | <50 | 69 | <50 |
WL Sampling Site | WL_S10 | WL_S6 | WL_S4 | WL_S3 | WL_S2 | WL_S7 | WL_S5 | WL_S8 | WL_S1 | WL_S9 | WL_S11 |
---|---|---|---|---|---|---|---|---|---|---|---|
EE2 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 | <0.035 |
E2 | <0.10 | <0.10 | <0.10 | 0.5 | 0.44 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 | <0.10 |
E1 | 3.25 | 1.00 | 1.50 | 0.5 | 0.90 | 2.2 | <0.10 | 0.9 | <0.10 | 0.37 | 0.4 |
Erythromycin | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
Clarithromycin | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 |
Azithromycin | <10 | <10 | 52 | <10 | <10 | 97 | <10 | <10 | 50 | <10 | 221 |
Methiocarb | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 |
Imidacloprid | 12 | 8 | 10 | <5 | 7 | 24 | <5 | 8 | <5 | 7 | <5 |
Thiacloprid | <5 | <5 | <5 | <5 | <5 | 10 | <5 | <5 | <5 | <5 | <5 |
Thiamethoxam | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
Clothianidin | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
Acetamiprid | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 | <5 |
Metaflumizone | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 |
Amoxicillyn | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 |
Ciprofloxacin | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 | <50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barreca, S.; Busetto, M.; Forni, C.; Colzani, L.; Clerici, L.; Daverio, D.; Balzamo, S.; Calabretta, E.; Peleggi, M.; Dellavedova, P. Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations. Pollutants 2021, 1, 207-216. https://doi.org/10.3390/pollutants1040017
Barreca S, Busetto M, Forni C, Colzani L, Clerici L, Daverio D, Balzamo S, Calabretta E, Peleggi M, Dellavedova P. Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations. Pollutants. 2021; 1(4):207-216. https://doi.org/10.3390/pollutants1040017
Chicago/Turabian StyleBarreca, Salvatore, Maddalena Busetto, Carola Forni, Luisa Colzani, Laura Clerici, Daniela Daverio, Stefania Balzamo, Elisa Calabretta, Massimo Peleggi, and Pierluisa Dellavedova. 2021. "Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations" Pollutants 1, no. 4: 207-216. https://doi.org/10.3390/pollutants1040017
APA StyleBarreca, S., Busetto, M., Forni, C., Colzani, L., Clerici, L., Daverio, D., Balzamo, S., Calabretta, E., Peleggi, M., & Dellavedova, P. (2021). Determination of Antibiotics, Pesticides, Herbicides, Fungicides and Hormones in Water Bodies in Italy in Occurrence with European Watch List Mechanism by Using an UHPLC-MS/MS System: Method Validation, Quantification and Evaluations. Pollutants, 1(4), 207-216. https://doi.org/10.3390/pollutants1040017