Assessment of the Optical Properties of a Graphene–Poly(3-hexylthiophene) Nanocomposite Applied to Organic Solar Cells †
Abstract
:1. Introduction
2. Results
2.1. Method
2.2. Electronical Parameters
2.3. Optical Parameters
2.3.1. Bandgap, Hole Collection Properties and Carrier Mobility
2.3.2. Refractive Index and Extinction Coefficient
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díez-Pascual, A.M.; Sánchez, J.A.L.; Capilla, R.P.; Díaz, P.G. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, Y.W.; Yu, S.W.; Liu, C.H.; Tsiang, R.C.C. Morphological and Optoelectronic Characteristics of Nanocomposites Comprising Graphene Nanosheets and Poly(3-Hexylthiophene). J. Nanosci. Nanotechnol. 2010, 10, 6520–6526. [Google Scholar] [CrossRef] [PubMed]
- Saini, V.; Abdulrazzaq, O.; Bourdo, S.; Dervishi, E.; Petre, A.; Bairi, V.G.; Mustafa, T.; Schnackenberg, L.; Viswanathan, T.; Biris, A.S. Structural and Optoelectronic Properties of P3HT-Graphene Composites Prepared by in Situ Oxidative Polymerization. J. Appl. Phys. 2012, 112, 054327. [Google Scholar] [CrossRef]
- Ossila. Available online: https://www.ossila.com/products/p3ht (accessed on 7 September 2021).
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.; Johnson, G.; Engelberg, D.; Ludwig, W.; Marrow, J. Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal. Science 2008, 321, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Presto, D.; Song, V.; Boucher, D. P3HT/Graphene Composites Synthesized Using In Situ GRIM Methods. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 60–76. [Google Scholar] [CrossRef]
- Kim, Y.; Kwon, Y.J.; Ryu, S.; Lee, C.J.; Lee, J.U. Preparation of Nanocomposite-Based High Performance Organic Field Effect Transistor via Solution Floating Method and Mechanical Property Evaluation. Polymers 2020, 12, 1046. [Google Scholar] [CrossRef] [PubMed]
- Advani, S.G.; Hsaio, K.-T. Manufacturing Techniques for Polymer Matrix Composites (PMCs); Woodhead Publishing Limited: Cambridge, UK, 2012; ISBN 9780857090676. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, A.K.; Prakash, R. Poly(3-hexylthiophene) (P3HT)/Graphene Nanocomposite Material Based Organic Field Effect Transistor with Enhanced Mobility. J. Nanosci. Nanotechnol. 2013, 13, 2823–2828. [Google Scholar] [CrossRef] [PubMed]
- El-Aasser, M.A. Performance Optimization of Bilayer Organic Photovoltaic Cells. J. Optoelectron. Adv. Mater. 2016, 18, 775–784. [Google Scholar]
- Bkakri, R.; Sayari, A.; Shalaan, E.; Wageh, S.; Al-Ghamdi, A.A.; Bouazizi, A. Effects of the Graphene Doping Level on the Optical and Electrical Properties of ITO/P3HT:Graphene/Au Organic Solar Cells. Superlattices Microstruct. 2014, 76, 461–471. [Google Scholar] [CrossRef]
- Abdulalmohsin, S.; Cui, J.B. Graphene-Enriched P3HT and Porphyrin-Modified ZnO Nanowire Arrays for Hybrid Solar Cell Applications. J. Phys. Chem. C 2012, 116, 9433–9438. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, G.; Zhang, Y.; Cao, X.; Cao, M.; Yu, Y.; Dai, H.; Yao, J. Solution-Processed Graphene Phototransistor Functionalized with P3HT/Graphene Bulk Heterojunction. Opt. Commun. 2018, 425, 161–165. [Google Scholar] [CrossRef]
Sample | Conductivity (S/m) |
---|---|
P3HT | 9.273 · 10−3 |
P3HT/G 0.2 % wt | 1.467 · 10−2 |
P3HT/G 1 % wt | 1.549 · 10−2 |
P3HT/G 2 % wt | 1.500 · 10−2 |
P3HT/G 10 % wt | 1.878 · 10−2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davoise, L.V.; Capilla, R.P.; Díez-Pascual, A.M. Assessment of the Optical Properties of a Graphene–Poly(3-hexylthiophene) Nanocomposite Applied to Organic Solar Cells. Mater. Proc. 2021, 7, 22. https://doi.org/10.3390/IOCPS2021-11241
Davoise LV, Capilla RP, Díez-Pascual AM. Assessment of the Optical Properties of a Graphene–Poly(3-hexylthiophene) Nanocomposite Applied to Organic Solar Cells. Materials Proceedings. 2021; 7(1):22. https://doi.org/10.3390/IOCPS2021-11241
Chicago/Turabian StyleDavoise, Lara Velasco, Rafael Peña Capilla, and Ana M. Díez-Pascual. 2021. "Assessment of the Optical Properties of a Graphene–Poly(3-hexylthiophene) Nanocomposite Applied to Organic Solar Cells" Materials Proceedings 7, no. 1: 22. https://doi.org/10.3390/IOCPS2021-11241
APA StyleDavoise, L. V., Capilla, R. P., & Díez-Pascual, A. M. (2021). Assessment of the Optical Properties of a Graphene–Poly(3-hexylthiophene) Nanocomposite Applied to Organic Solar Cells. Materials Proceedings, 7(1), 22. https://doi.org/10.3390/IOCPS2021-11241