Bioelectrical Impedance Phase Angle as a Predicting Indicator in Chronic Spinal Cord Injury †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bioelectrical Impedance Analysis
2.2. Anthropometry
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chhabra, H.S.; Arora, M. Demographic profile of traumatic spinal cord injuries admitted at Indian spinal injuries Centre with special emphasis on mode of injury: A retrospective study. Spinal Cord 2012, 50, 745–754. [Google Scholar] [CrossRef]
- Anderson, K.D.; Fridén, J.; Lieber, R.L. Acceptable benefits and risks associated with surgically improving arm function in individuals living with cervical spinal cord injury. Spinal Cord 2009, 47, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Gorla, J.I.; Costae Silva, A.D.A.; Borges, M.; Tanhoffer, R.A.; Godoy, P.S.; Calegari, D.R.; Santos, A.D.O.; Ramos, C.D.; Nadruz Junior, W.; Cliquet Junior, A. Impact of wheelchair rugby on body composition of subjects with tetraplegia: A pilot study. Arch. Phys. Med. Rehabil. 2016, 97, 92–96. [Google Scholar] [CrossRef]
- Abilmona, S.M.; Sumrell, R.M.; Gill, R.S.; Adler, R.A.; Gorgey, A.S. Serum testosterone levels may influence body composition and cardiometabolic health in men with spinal cord injury. Spinal Cord 2019, 57, 229–239. [Google Scholar] [CrossRef]
- Gorgey, A.S.; Martin, H.; Metz, A.; Khalil, R.E.; Dolbow, D.R.; Gater, D.R. Longitudinal changes in body composition and metabolic profile between exercise clinical trials in men with chronic spinal cord injury. J. Spinal Cord Med. 2016, 39, 699–712. [Google Scholar] [CrossRef] [Green Version]
- Gorgey, A.S.; Gater, D.R. Prevalence of Obesity After Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2007, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Cirnigliaro, C.M.; La Fountaine, M.F.; Emmons, R.; Kirshblum, S.C.; Asselin, P.; Spungen, A.M.; Bauman, W.A. Prediction of limb lean tissue mass from bioimpedance spectroscopy in persons with chronic spinal cord injury. J. Spinal Cord Med. 2013, 36, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Gater, D.R.; Clasey, J.L. Body composition assessment in spinal cord injury clinical trials. Top. Spinal Cord Inj. Rehabil. 2006, 11, 36–49. [Google Scholar] [CrossRef]
- de Groot, S.; Kouwijzer, I.; Baauw, M.; Broeksteeg, R.; Valent, L.J. Effect of self-guided training for the HandbikeBattle on body composition in people with spinal cord injury. Spinal Cord Ser. Cases 2018, 4, 1–7. [Google Scholar] [CrossRef]
- Eriks-Hoogland, I.; Hilfiker, R.; Baumberger, M.; Balk, S.; Stucki, G.; Perret, C. Clinical assessment of obesity in persons with spinal cord injury: Validity of waist circumference, body mass index, and anthropometric index. J. Spinal Cord Med. 2011, 34, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, E.; Alonso, K.C.; Jr, A.C. Body composition assessment by bioelectrical impedance analysis and body mass index in individuals with chronic spinal cord injury. J. Electr. Bioimpedance 2016, 7, 2–5. [Google Scholar] [CrossRef]
- Silveira, S.L.; Ledoux, T.A.; Robinson-Whelen, S.; Stough, R.; Nosek, M.A. Methods for classifying obesity in spinal cord injury: A review. Spinal Cord 2017, 55, 812–817. [Google Scholar] [CrossRef]
- Lukaski, H.C.; Bolonchuk, W.W. Estimation of body fluid volumes using tretrapolar bioelectrical impedance measurements. Aviat. Space Environ. Med. 1988, 59, 1163–1169. [Google Scholar]
- Desport, J.C.; Preux, P.M.; Bouteloup-Demange, C.; Clavelou, P.; Beaufrère, B.; Bonnet, C.; Couratier, P.P. Validation of bioelectrical impedance analysis in patients with amyotrophic lateral sclerosis. Am. J. Clin. Nutr. 2003, 77, 1179–1185. [Google Scholar] [CrossRef] [Green Version]
- Sarhill, N.; Walsh, D.; Nelson, K.; Homsi, J.; Komurcu, S. Bioelectrical impedance, cancer nutritional assessment, and ascites. Support. Care Cancer 2000, 8, 341–343. [Google Scholar] [CrossRef]
- Aldobali, M.; Urooj, S.; Pal, K. Applications of Bioelectrical Impedance Analysis in Diagnosis of Diseases: A Systematic Review. J. Clin. Diagn. Res. 2021, 15, 1–6. [Google Scholar] [CrossRef]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Hida, T.; Seki, T.; Hamada, T.; Ito, K.; Tsushima, M.; Morozumi, M.; Machino, M.; et al. The decrease in phase angle measured by bioelectrical impedance analysis reflects the increased locomotive syndrome risk in community-dwelling people: The Yakumo study. Mod. Rheumatol. 2019, 29, 496–502. [Google Scholar] [CrossRef]
- Aldobali, M.; Pal, K. Bioelectrical Impedance Analysis for Evaluation of Body Composition: A Review. In Proceedings of the 2021 International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen, 4–5 July 2021. [Google Scholar]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Li, L.; Shin, H.; Stampas, A.; Li, X.; Zhou, P. Electrical impedance myography changes after incomplete cervical spinal cord injury: An examination of hand muscles. Clin. Neurophysiol. 2017, 128, 2242–2247. [Google Scholar] [CrossRef]
- Schwenk, A.; Eschner, W.; Kremer, G.; Ward, L.C. Assessment of intracellular water by whole body bioelectrical impedance and total body potassium in HIV-positive patients. Clin. Nutr. 2000, 19, 109–113. [Google Scholar] [CrossRef]
- Gupta, D.; Lammersfeld, C.A.; Burrows, J.L.; Dahlk, S.L.; Vashi, P.G.; Grutsch, J.F.; Hoffman, S.; Lis, C.G. Bioelectrical impedance phase angle in clinical practice: Implications for prognosis in advanced colorectal cancer. Am. J. Clin. Nutr. 2004, 80, 1634–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faisy, C.; Rabbat, A.; Kouchakji, B.; Laaban, J.P. Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med. 2000, 26, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Hajian-Tilaki, K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Casp. J. Intern. Med. 2013, 4, 627–635. [Google Scholar]
- Giangregorio, L.; McCartney, N. Bone loss and muscle atrophy in spinal cord injury: Epidemiology, fracture prediction, and rehabilitation strategies. J. Spinal Cord Med. 2006, 29, 489–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Buehring, B.; Krueger, D.; Anderson, R.M.; Schoeller, D.A.; Binkley, N. Electrical Properties Assessed by Bioelectrical Impedance Spectroscopy as Biomarkers of Age-related Loss of Skeletal Muscle Quantity and Quality. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Uemura, K.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Ishii, H.; Shimada, H. Predictivity of bioimpedance phase angle for incident disability in older adults. J. Cachexia Sarcopenia Muscle 2020, 11, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Dittmar, M. Reliability and Variability of Bioimpedance Measures in Normal Adults: Effects of Age, Gender, and Body Mass. Am. J. Phys. Anthropol. 2003, 122, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Horwitz, R.I.; Chertow, G.M. Phase angle, frailty and mortality in older adults. J. Gen. Intern. Med. 2014, 29, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Kadoshi, H.; Shapiro, G.; Feldman, L.; Sandbank, J.; Averbukh, Z. Longitudinal changes in bioimpedance phase angle reflect inverse changes in serum IL-6 levels in maintenance hemodialysis patients. Nutrition 2014, 30, 297–304. [Google Scholar] [CrossRef]
- Norman, K.; Wirth, R.; Neubauer, M.; Eckardt, R.; Stobäus, N. The bioimpedance phase angle predicts low muscle strength, impaired quality of life, and increased mortality in old patients with cancer. J. Am. Med. Dir. Assoc. 2015, 16, 173.e17–173.e22. [Google Scholar] [CrossRef] [PubMed]
- Hui, D.; Bansal, S.; Morgado, M.; Dev, R.; Chisholm, G.; Bruera, E. Phase angle for prognostication of survival in patients with advanced cancer: Preliminary findings. Cancer 2014, 120, 2207–2214. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Silva, M.C.G.; Barros, A.J.D.; Post, C.L.A.; Waitzberg, D.L.; Heymsfield, S.B. Can bioelectrical impedance analysis identify malnutrition in preoperative nutrition assessment? Nutrition 2003, 19, 422–426. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric impedance phase angle and body composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gigante, A.; Gasperini, M.L.; Rosato, E.; Navarini, L.; Margiotta, D.; Afeltra, A.; Muscaritoli, M. Phase angle could be a marker of microvascular damage in systemic sclerosis. Nutrition 2020, 73, 110730. [Google Scholar] [CrossRef]
- Anja, B.W.; Danielzik, S.; Dörhöfer, R.P.; Later, W.; Wiese, S.; Müller, M.J. Phase angle from bioelectrical impedance analysis: Population reference values by age, sex, and body mass index. J. Parenter Enter. Nutr. 2006, 30, 309–316. [Google Scholar]
- Kim, J.; Park, H.J.; Sim, W.S.; Lee, S.; Kim, K.; Kim, W.J.; Lee, J.Y. Predictive value of the phase angle for analgesic efficacy in lumbosacral transforaminal block. J. Clin. Med. 2021, 10, 240. [Google Scholar] [CrossRef]
Variables | SCI | HS | ||||
---|---|---|---|---|---|---|
Mean ± SD | Mean ± SD | |||||
Gender | Male (41) | Female (11) | Total (52) | Male (39) | Female (13) | Total (52) |
Age (year) | 32.26 ± 9.16 | 29.81± 13.71 | 32 ± 10.19 | 31.28 ± 5.75 | 32.30 ± 4.98 | 31.6 ± 5.54 |
Height (cm) | 171.52 ± 8.16 | 161.04 ± 10.46 | 169.3 ± 9.61 | 172.67 ± 7.12 | 158.72 ± 8.0 | 169.18 ± 9.5 |
Weight (kg) | 65.51 ± 14.33 | 56.69 ± 11.81 | 63.64 ± 14.2 | 75.33 ± 13.44 | 60.79 ± 9.1 | 71.69 ± 14 |
BMI (kg/m2) | 22.30 ± 4.42 | 21.92 ± 4.43 | 22.22 ± 4.38 | 25.17 ± 3.62 | 24.15 ± 3.30 | 24.91 ± 3.54 |
PhA (°) | 4.941 ± 1.29 | 4.62 ± 0.93 | 4.875 ± 1.22 | 7.33 ± 0.60 | 6.61 ± 0.53 | 7.156 ± 0.66 |
The Comparison Group for Non-Normality Distribution “Mann–Whitney t-Test.” | |||||
---|---|---|---|---|---|
Variables | SCI | HS | Median Difference (SCI vs. HS) (95% CI of Difference) | Mann–Whitney U | p-Value |
Median | |||||
Gender (52) | |||||
PhA | 4.70 | 7.10 | 2.40 (2.1000 to 2.8000) | 146.00 | p < 0.0001 |
Male (41) | Male (39) | ||||
PhA | 5.0 | 7.30 | 2.60 (2.1000 to 3.0000) | 83.00 | p < 0.0001 |
Comparison Female for Normality Distribution “Shapiro–Wilk t-test.” | |||||
Variables | Females (11) | Females (13) | Mean Difference (SCI vs. HS) (95% CI of difference) | Standard Error | p-value |
(Mean ± SD) | |||||
PhA | 4.62 ± 0.93 | 6.61 ± 0.53 | 1.9881 (1.3565 to 2.6197) | 0.3046 | p < 0.0001 |
Variable | Sex | AUC | 95% CI | p-Value | Cutoff Values | Sensitivity (%) | Specificity (%) |
---|---|---|---|---|---|---|---|
PhA (SCI) | Male | 1.00 | 0.914 to 1.000 | <0.0001 | ≤4.7 | 100 | 100 |
Female | 1.00 | 0.715 to 1.000 | <0.0001 | ≤4.4 | 100 | 100 | |
PhA (HS) | Male | 1.00 | 0.910 to 1.000 | <0.0001 | ≤6.9 | 100 | 100 |
Female | 1.00 | 0.753 to 1.000 | <0.0001 | ≤6.3 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldobali, M.; Pal, K.; Chhabra, H.S. Bioelectrical Impedance Phase Angle as a Predicting Indicator in Chronic Spinal Cord Injury. Mater. Proc. 2022, 10, 2. https://doi.org/10.3390/materproc2022010002
Aldobali M, Pal K, Chhabra HS. Bioelectrical Impedance Phase Angle as a Predicting Indicator in Chronic Spinal Cord Injury. Materials Proceedings. 2022; 10(1):2. https://doi.org/10.3390/materproc2022010002
Chicago/Turabian StyleAldobali, Mahmood, Kirti Pal, and Harvinder Singh Chhabra. 2022. "Bioelectrical Impedance Phase Angle as a Predicting Indicator in Chronic Spinal Cord Injury" Materials Proceedings 10, no. 1: 2. https://doi.org/10.3390/materproc2022010002
APA StyleAldobali, M., Pal, K., & Chhabra, H. S. (2022). Bioelectrical Impedance Phase Angle as a Predicting Indicator in Chronic Spinal Cord Injury. Materials Proceedings, 10(1), 2. https://doi.org/10.3390/materproc2022010002