An Internet of Medical Things-Based Smart Electromyogram Device for Monitoring of Musculoskeletal Disorders †
Abstract
1. Introduction
2. Methodology
2.1. IoMT-Based EMG Acquisition Device
2.1.1. EMG Sensor Module
2.1.2. Node Microcontroller Unit
2.2. IoT Cloud Platform
2.2.1. EMG Signal Processing
2.2.2. Deep Learning Algorithm
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latronico, N.; Gosselink, R. A guided approach to diagnose severe muscle weakness in the intensive care unit. Rev. Bras. Ter. Intensiv. 2015, 27, 199–201. [Google Scholar] [CrossRef] [PubMed]
- John, J.; John, J. Grading of muscle power: Comparison of MRC and analogue scales by physiotherapists. Int. J. Rehabil. Res. 1984, 7, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Demura, S.; Yamaji, S.; Goshi, F.; Nagasawa, Y. Lateral Dominance of Legs in Maximal Muscle Power, Muscular Endurance, and Grading Ability. Percept. Mot. Ski. 2001, 93, 11–23. [Google Scholar] [CrossRef] [PubMed]
- McManus, L.; De Vito, G.; Lowery, M.M. Analysis and Biophysics of Surface EMG for Physiotherapists and Kinesiologists: Toward a Common Language With Rehabilitation Engineers. Front. Neurol. 2020, 11, 576729. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Shin, J.; Kwon, Y.; Park, B. EMG-Based Dynamic Hand Gesture Recognition Using Edge AI for Human–Robot Interaction. Electronics 2023, 12, 1541. [Google Scholar] [CrossRef]
- Wang, B.; McDaid, A.; Biglari-Abhari, M.; Aw, K.C. Design and development of a glove for post-stroke hand rehabilitation. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1047–1051. [Google Scholar]
- Tedesco, S.; Belcastro, M.; Torre, O.M.; Torchia, P.; Alfieri, D.; Khokhlova, L.; O’Flynn, B. A Multi-Sensors Wearable System for Remote Assessment of Physiotherapy Exercises during ACL Rehabilitation. In Proceedings of the 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS), Genoa, Italy, 27–29 November 2019; pp. 237–240. [Google Scholar]
- Sridar, S.; Qiao, Z.; Muthukrishnan, N.; Zhang, W.; Polygerinos, P. A Soft-Inflatable Exosuit for Knee Rehabilitation: Assisting Swing Phase During Walking. Front. Robot. AI 2018, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Pu, X.; Jiang, C.; Liu, T.; Huang, X.; Chen, L.; Du, C.; Sun, J.; Hu, W.; Wang, Z.L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Hossain, M.S.; Showail, A.J.; Alrajeh, N.A.; Ghoneim, A. AI-enabled IIoT for live smart city event monitoring. IEEE Internet Things J. 2021, 10, 2872–2880. [Google Scholar] [CrossRef]
- Rodić, B.; Stevanović, V.; Labus, A.; Kljajić, D.; Trajkov, M. Adoption Intention of an IoT Based Healthcare Technologies in Rehabilitation Process. Int. J. Hum.–Comput. Interact. 2023, 40, 2873–2886. [Google Scholar] [CrossRef]
- Saleem, A.A.; Zafar, K.; Raza, M.A.; Kareem, Z.; Mui-zzud-din; Siddiqui, H.U.R.; Dudley, S. IOT Based Smart Physiotherapy System: A Review. J. Eng. Res. Sci. 2022, 1, 45–55. [Google Scholar] [CrossRef]
- Lee, K.H.; Min, J.Y.; Byun, S. Electromyogram-Based Classification of Hand and Finger Gestures Using Artificial Neural Networks. Sensors 2021, 22, 225. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Deng, J.; Pang, G.; Zhang, H.; Li, J.; Deng, B.; Pang, Z.; Xu, J.; Jiang, M.; Liljeberg, P.; et al. An IoT-Enabled Stroke Rehabilitation System Based on Smart Wearable Armband and Machine Learning. IEEE J. Transl. Eng. Health Med. 2018, 6, 2100510. [Google Scholar] [CrossRef] [PubMed]
- Understanding the FFT Algorithm. 2013. Available online: https://jakevdp.github.io/blog/2013/08/28/understanding-the-fft/ (accessed on 28 August 2013).
- Jain, S.; Bajaj, V.; Kumar, A. Riemann Liouvelle Fractional Integral Based Empirical Mode Decomposition for ECG Denoising. IEEE J. Biomed. Health Inform. 2017, 22, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Krupa, N.; Ma, M.A.; Zahedi, E.; Ahmed, S.; Hassan, F.M. Antepartum fetal heart rate feature extraction and classification using empirical mode decomposition and support vector machine. Biomed. Eng. Online 2011, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.J.; Rai, A.; Ahmad, Z.; Kim, J.-M. A fault diagnosis framework for centrifugal pumps by scalogram-based imaging and deep learning. IEEE Access 2017, 9, 58052–58066. [Google Scholar] [CrossRef]
- Neupane, D.; Kim, Y.; Seok, J. Bearing Fault Detection Using Scalogram and Switchable Normalization-Based CNN (SN-CNN). IEEE Access 2021, 9, 88151–88166. [Google Scholar] [CrossRef]
- Najumnissa, D.; Vijayalakshmi, S.; Paramasivam, A.; Karthikha, R.; Shuaib, Y.M. Analysis of Deep Learning Algorithms for Intelligent Plant Disease Identification. In Proceedings of the 2022 Second International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 23–25 February 2022; pp. 377–381. [Google Scholar]
- Basak, H.; Roy, A.; Lahiri, J.B.; Bose, S.; Patra, S. SVM and ANN based Classification of EMG signals by using PCA and LDA. arXiv 2021, arXiv:2110.15279. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for multi-class classification: An overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
Class | Accuracy % | Precision | Recall | F1-Score | Class |
---|---|---|---|---|---|
Grade 0 | 97.6 | 0.94 | 0.92 | 0.93 | Grade 0 |
Grade 1 | 97.1 | 0.92 | 0.91 | 0.91 | Grade 1 |
Grade 2 | 97.8 | 0.92 | 0.95 | 0.93 | Grade 2 |
Grade 3 | 98.3 | 0.94 | 0.96 | 0.95 | Grade 3 |
Grade 4 | 97.1 | 0.92 | 0.91 | 0.91 | Grade 4 |
Grade 5 | 97.1 | 0.92 | 0.91 | 0.91 | Grade 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, V.; Alagumariappan, P.; Sathyamoorthy, M.; Dhanaraj, R.K.; Krishnamurthy, K.; Cyril, E. An Internet of Medical Things-Based Smart Electromyogram Device for Monitoring of Musculoskeletal Disorders. Eng. Proc. 2024, 82, 108. https://doi.org/10.3390/ecsa-11-20351
Sankaran V, Alagumariappan P, Sathyamoorthy M, Dhanaraj RK, Krishnamurthy K, Cyril E. An Internet of Medical Things-Based Smart Electromyogram Device for Monitoring of Musculoskeletal Disorders. Engineering Proceedings. 2024; 82(1):108. https://doi.org/10.3390/ecsa-11-20351
Chicago/Turabian StyleSankaran, Vijayalakshmi, Paramasivam Alagumariappan, Malathy Sathyamoorthy, Rajesh Kumar Dhanaraj, Kamalanand Krishnamurthy, and Emmanuel Cyril. 2024. "An Internet of Medical Things-Based Smart Electromyogram Device for Monitoring of Musculoskeletal Disorders" Engineering Proceedings 82, no. 1: 108. https://doi.org/10.3390/ecsa-11-20351
APA StyleSankaran, V., Alagumariappan, P., Sathyamoorthy, M., Dhanaraj, R. K., Krishnamurthy, K., & Cyril, E. (2024). An Internet of Medical Things-Based Smart Electromyogram Device for Monitoring of Musculoskeletal Disorders. Engineering Proceedings, 82(1), 108. https://doi.org/10.3390/ecsa-11-20351