Traffic Stream Characteristics Estimation Using In-Pavement Sensor Network †
Abstract
:1. Introduction
2. Sensor Fundamental
3. Methodology
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xing, J.; Wu, W.; Cheng, Q.; Liu, R. Traffic State Estimation of Urban Road Networks by Multi-Source Data Fusion: Review and New Insights. Phys. A Stat. Mech. Its Appl. 2022, 595, 127079. [Google Scholar] [CrossRef]
- Abbas, Z.; Al-Shishtawy, A.; Girdzijauskas, S.; Vlassov, V. Short-Term Traffic Prediction Using Long Short-Term Memory Neural Networks. In Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 2–7 July 2018; pp. 57–65. [Google Scholar]
- Zhou, X.; Tanvir, S.; Lei, H.; Taylor, J.; Liu, B.; Rouphail, N.M.; Frey, H.C. Integrating a Simplified Emission Estimation Model and Mesoscopic Dynamic Traffic Simulator to Efficiently Evaluate Emission Impacts of Traffic Management Strategies. Transp. Res. Part D Transp. Environ. 2015, 37, 123–136. [Google Scholar] [CrossRef]
- Asaithambi, G.; Kanagaraj, V.; Srinivasan, K.K.; Sivanandan, R. Study of Traffic Flow Characteristics Using Different Vehicle-Following Models under Mixed Traffic Conditions. Transp. Lett. 2018, 10, 92–103. [Google Scholar] [CrossRef]
- Seo, T.; Bayen, A.M.; Kusakabe, T.; Asakura, Y. Traffic State Estimation on Highway: A Comprehensive Survey. Annu. Rev. Control. 2017, 43, 128–151. [Google Scholar] [CrossRef]
- Kwon, J.; Varaiya, P.; Skabardonis, A. Estimation of Truck Traffic Volume from Single Loop Detectors with Lane-to-Lane Speed Correlation. Transp. Res. Rec. 2003, 1856, 106–117. [Google Scholar] [CrossRef]
- Asmaa, O.; Mokhtar, K.; Abdelaziz, O. Road Traffic Density Estimation Using Microscopic and Macroscopic Parameters. Image Vis. Comput. 2013, 31, 887–894. [Google Scholar] [CrossRef]
- Won, M. Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey. IEEE Access 2020, 8, 73340–73358. [Google Scholar] [CrossRef]
- Li, H.; Qin, L.; Chang, X.; Rong, J.; Ran, B.; Jia, L. Sensor Layout Strategy and Sensitivity Analysis for Macroscopic Traffic Flow Parameter Acquisition. IET Intell. Transp. Syst. 2017, 11, 212–221. [Google Scholar] [CrossRef]
- Huang, M.-F.; Salemi, M.; Chen, Y.; Zhao, J.; Xia, T.J.; Wellbrock, G.A.; Huang, Y.-K.; Milione, G.; Ip, E.; Ji, P. First Field Trial of Distributed Fiber Optical Sensing and High-Speed Communication over an Operational Telecom Network. J. Light. Technol. 2019, 38, 75–81. [Google Scholar] [CrossRef]
- Liu, H.; Ma, J.; Yan, W.; Liu, W.; Zhang, X.; Li, C. Traffic Flow Detection Using Distributed Fiber Optic Acoustic Sensing. IEEE Access 2018, 6, 68968–68980. [Google Scholar] [CrossRef]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef] [PubMed]
- Landesmann, A.; Seruti, C.A.; de Miranda Batista, E. Mechanical Properties of Glass Fiber Reinforced Polymers Members for Structural Applications. Mater. Res. 2015, 18, 1372–1383. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Palek, L.; Strommen, R. Glass Fiber–Reinforced Polymer–Packaged Fiber Bragg Grating Sensors for Ultra-Thin Unbonded Concrete Overlay Monitoring. Struct. Health Monit. 2015, 14, 110–123. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Huang, Y.; Wang, H.; Jianping, H.; Huang, M.; Jinping, O. Optical Fiber Bragg Grating Sensor Assembly for 3D Strain Monitoring and Its Case Study in Highway Pavement. Mech. Syst. Signal Process. 2012, 28, 36–49. [Google Scholar] [CrossRef]
- MnROAD Mainline Traffic Cameras. Available online: https://www.dot.state.mn.us/mnroad/operations/traffic-cameras.html (accessed on 20 December 2023).
Vehicle | Tin | Tout | Travel Time (s) | Spot Speed (km/h) |
---|---|---|---|---|
1 | 4.923 | 5.069 | 0.146 | 120.25 |
2 | 17.44 | 17.58 | 0.14 | 125.40 |
3 | 33.23 | 33.4 | 0.17 | 103.27 |
4 | 35.61 | 35.78 | 0.17 | 103.27 |
5 | 40.52 | 40.68 | 0.16 | 109.73 |
6 | 52.82 | 53 | 0.18 | 97.54 |
7 | 60.41 | 60.58 | 0.17 | 103.27 |
8 | 64.44 | 64.59 | 0.15 | 117.04 |
9 | 66.9 | 67.05 | 0.15 | 117.04 |
10 | 99.35 | 99.49 | 0.14 | 125.40 |
11 | 107.1 | 107.3 | 0.2 | 87.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Tarawneh, M. Traffic Stream Characteristics Estimation Using In-Pavement Sensor Network. Eng. Proc. 2023, 58, 38. https://doi.org/10.3390/ecsa-10-16007
Al-Tarawneh M. Traffic Stream Characteristics Estimation Using In-Pavement Sensor Network. Engineering Proceedings. 2023; 58(1):38. https://doi.org/10.3390/ecsa-10-16007
Chicago/Turabian StyleAl-Tarawneh, Mu’ath. 2023. "Traffic Stream Characteristics Estimation Using In-Pavement Sensor Network" Engineering Proceedings 58, no. 1: 38. https://doi.org/10.3390/ecsa-10-16007
APA StyleAl-Tarawneh, M. (2023). Traffic Stream Characteristics Estimation Using In-Pavement Sensor Network. Engineering Proceedings, 58(1), 38. https://doi.org/10.3390/ecsa-10-16007