Enhancing Fire Alarm Systems Using Edge Machine Learning for Smoke Classification and False Alarm Reduction †
Abstract
1. Introduction
2. Materials and Methods
2.1. System Description
2.2. Data Collection and Calibration
2.3. Data Preprocessing
2.4. Deep Neural Network (DNN) Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Vázquez-López, A.; del Río Sáez, J.S.; Wang, D.-Y. Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective. Nano-Micro Lett. 2022, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- El Barkani, M.; Benamar, N.; Talei, H.; Bagaa, M. Gas Leakage Detection Using Tiny Machine Learning. Electronics 2024, 13, 4768. [Google Scholar] [CrossRef]
- Khan, M.M. Sensor-Based Gas Leakage Detector System. Eng. Proc. 2020, 2, 28. [Google Scholar] [CrossRef]
- Pan, G.; Xie, Y.; Yang, Q. IoT-based cloud monitoring system for building fires. Int. J. Metrol. Qual. Eng. 2025, 16, 1. [Google Scholar] [CrossRef]
- Sharma, A.; Khullar, V.; Kansal, I.; Chhabra, G.; Arora, P.; Popli, R.; Kumar, R. Gas Detection and Classification Using Multimodal Data Based on Federated Learning. Sensors 2024, 24, 5904. [Google Scholar] [CrossRef] [PubMed]
- BME680 Low Power Gas, Pressure, Temperature & Humidity Sensor. Available online: https://www.bosch-sensortec.com/media/boschsensortec/downloads/datasheets/bst-bme680-ds001.pdf (accessed on 4 August 2025).
- Grove- Multichannel Gas Sensor v2. Available online: https://docs.rs-online.com/12eb/A700000011325879.pdf (accessed on 4 August 2025).
- Hydrogen Sulfide Gas Sensor (Model: MQ136). Available online: https://www.winsen-sensor.com/d/files/manual/mq136.pdf (accessed on 4 August 2025).
- MEMS Carbon Monoxide Gas Sensor (Model No.: GM-702B). Available online: https://www.winsen-sensor.com/d/files/PDF/MEMS%20Gas%20Sensor/gm-702b%EF%BC%88ver1_1%EF%BC%89manual.pdf (accessed on 4 August 2025).
- MEMS Alcohol Gas Sensor (Model N0.: GM-302B). Available online: https://www.cnwinsen.com/wp-content/uploads/2021/08/MEMS-GM-302B-Manual-V1.1.pdf (accessed on 4 August 2025).
- MEMS NO2 Gas Sensor (Model No.:GM-102B). Available online: https://www.cnwinsen.com/wp-content/uploads/2021/08/MEMS-GM-102B-Manual-V2.1.pdf (accessed on 4 August 2025).
- MEMS VOC Gas Sensor (Model No.:GM-502B). Available online: https://www.winsen-sensor.com/d/files/manual/gm-502b.pdf (accessed on 4 August 2025).
- Wio Terminal: ATSAMD51 Core with Realtek RTL8720DN BLE 5.0 & Wi-Fi 2.4/5G Dev Board. Available online: https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/423/102991299_Web.pdf (accessed on 4 August 2025).
- Wio Terminal Tensorflow Lite Micro Getting Started. Available online: https://wiki.seeedstudio.com/Wio-Terminal-TinyML-TFLM-1/ (accessed on 4 August 2025).
- How to Make an AI-Powered Artifical Nose. Available online: https://www.digikey.com/en/maker/projects/how-to-make-an-ai-powered-artificial-nose/3fcf88a89efa47a1b231c5ad2097716a (accessed on 4 August 2025).
- Cantrell, C.A. Technical Note: Review of methods for linear least-squares fitting of data and application to atmospheric chemistry problems. Atmos. Chem. Phys. 2008, 8, 5477–5487. [Google Scholar] [CrossRef]
- Sujon, K.M.; Hassan, R.B.; Towshi, Z.T.; Othman, M.A.; Samad, M.A.; Choi, K. When to Use Standardization and Normalization: Empirical Evidence From Machine Learning Models and XAI. IEEE Access 2024, 12, 135300–135314. [Google Scholar] [CrossRef]
- [LEE3] Lessons learned from building a connected artificial nose with TinyML Benjamin Cabé,Microsoft. Available online: https://youtu.be/gtrE-uBMko0?si=YRHk6xFUbc21qqnI (accessed on 4 August 2025).
- Syed, M.A. Overview on Open Source Machine Learning Platforms-TensorFlow. SSRN Electron. J. 2020, 3, 11–14. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. Available online: https://proceedings.mlr.press/v15/glorot11a.html (accessed on 4 August 2025).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Takahashi, K.; Yamamoto, K.; Kuchiba, A.; Koyama, T. Confidence interval for micro-averaged F1 and macro-averaged F1 scores. Appl. Intell. 2022, 52, 4961–4972. [Google Scholar] [CrossRef] [PubMed]
- Warden, P.; Situnayake, D. TinyML: Machine Learning with TensorFlow Lite on Arduino and Ultra-Low-Power Microcontrollers; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2019. [Google Scholar]






| Sensor | Target Gases | Detection Ranges |
|---|---|---|
| BME 680 | Volatile Organic Compounds (VOCs), Temperature, and Humidity | VOCs (IAQ) = 0 to 500 Temperature (CO) = −40 to 85 Humidity (%) = 0 to 100 |
Grove–Multichannel Gas sensor V2
| NO2 gas, Ethanol vapor, VOC gas, and CO gas | NO2(PPM) = 0.1 to 10 Ethanol (PPM) = 1 to 500 VOC (PPM) = 1 to 500 CO(PPM) = 5 to 5000 |
| MQ 136 | Hydrogen Sulfide (SnO2) gas | SnO2(PPM) = 1 to 200 |
| Gas Sensor | Least Square Fitting Function | Correlation Coefficient |
|---|---|---|
| GM-502B | Y = 9.99X − 106.16 | r = 0.99 |
| GM-102B | Y= 12X − 90.88 | r = 0.99 |
| GM-302B | Y= 11.45X − 174.87 | r = 0.99 |
| GM-702B | Y= 0.97X + 765.37 | r = 0.85 |
| MQ-136 | Y= −0.36X + 625.23 | r= −0.29 |
| BME-860 VOC gas sensor | Y= −6836X + 545339 | r= −0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshaya, A.; Almutairi, A. Enhancing Fire Alarm Systems Using Edge Machine Learning for Smoke Classification and False Alarm Reduction. Eng. Proc. 2025, 118, 24. https://doi.org/10.3390/ECSA-12-26524
Alshaya A, Almutairi A. Enhancing Fire Alarm Systems Using Edge Machine Learning for Smoke Classification and False Alarm Reduction. Engineering Proceedings. 2025; 118(1):24. https://doi.org/10.3390/ECSA-12-26524
Chicago/Turabian StyleAlshaya, Abdulrhman, and Abdullah Almutairi. 2025. "Enhancing Fire Alarm Systems Using Edge Machine Learning for Smoke Classification and False Alarm Reduction" Engineering Proceedings 118, no. 1: 24. https://doi.org/10.3390/ECSA-12-26524
APA StyleAlshaya, A., & Almutairi, A. (2025). Enhancing Fire Alarm Systems Using Edge Machine Learning for Smoke Classification and False Alarm Reduction. Engineering Proceedings, 118(1), 24. https://doi.org/10.3390/ECSA-12-26524
