Performance of Bloch-like Surface Wave Refractometers Based on Laterally Polished Photonic Crystal Fibers with Single-Layer Coatings: From Nanolayer to Nanostrip †
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Del Villar, I.; Gonzalez-Valencia, E.; Kwietniewski, N.; Burnat, D.; Armas, D.; Pituła, E.; Janik, M.; Matías, I.R.; Giannetti, A.; Torres, P.; et al. Nano-Photonic Crystal D-Shaped Fiber Devices for Label-Free Biosensing at the Attomolar Limit of Detection. Adv. Sci. 2024, 11, 2310118. [Google Scholar] [CrossRef] [PubMed]
- Munzert, P.; Danz, N.; Sinibaldi, A.; Michelotti, F. Multilayer Coatings for Bloch Surface Wave Optical Biosensors. Surf. Coat. Technol. 2017, 314, 79–84. [Google Scholar] [CrossRef]
- Homola, J.; Piliarik, M. Surface Plasmon Resonance (SPR) Sensors. In Surface Plasmon Resonance Based Sensors; Homola, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 45–67. ISBN 978-3-540-33919-9. [Google Scholar]
- Huraiya, M.A.; Razzak, S.M.A.; Tabata, H.; Ramaraj, S.G. New Approach for a Highly Sensitive V-Shaped SPR Biosensor for a Wide Range of Analyte RI Detection. J. Phys. Chem. C 2024, 128, 15117–15123. [Google Scholar] [CrossRef]
- Das, A.; Huraiya, M.A.; Raj, R.V.; Tabata, H.; Ramaraj, S.G. Ultra-Sensitive Refractive Index Detection with Gold-Coated PCF-Based SPR Sensor. Talanta Open 2024, 10, 100384. [Google Scholar] [CrossRef]
- Hoque, A.M.T.; Al-Tabatabaie, K.F.; Ali, M.E.; Butt, A.M.; Mitu, S.S.I.; Qureshi, K.K. U-Grooved Selectively Coated and Highly Sensitive PCF-SPR Sensor for Broad Range Analyte RI Detection. IEEE Access 2023, 11, 74486–74499. [Google Scholar] [CrossRef]
- Piliarik, M.; Homola, J. Surface Plasmon Resonance (SPR) Sensors: Approaching Their Limits? Opt. Express 2009, 17, 16505–16517. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-J.; Zhu, X.-S. Optical Fiber Sensor Based on Bloch Surface Wave in Photonic Crystals. Opt. Express 2016, 24, 16016–16026. [Google Scholar] [CrossRef] [PubMed]
- Sinibaldi, A.; Danz, N.; Descrovi, E.; Munzert, P.; Schulz, U.; Sonntag, F.; Dominici, L.; Michelotti, F. Direct Comparison of the Performance of Bloch Surface Wave and Surface Plasmon Polariton Sensors. Sens. Actuators B Chem. 2012, 174, 292–298. [Google Scholar] [CrossRef]
- Gonzalez-Valencia, E.; Reyes-Vera, E.; Del Villar, I.; Torres, P. Side-Polished Photonic Crystal Fiber Sensor with Ultra-High Figure of Merit Based on Bloch-like Surface Wave Resonance. Opt. Laser Technol. 2024, 169, 110129. [Google Scholar] [CrossRef]
- Gonzalez-Valencia, E.; Villar, I.D.; Torres, P. Novel Bloch Wave Excitation Platform Based on Few-Layer Photonic Crystal Deposited on D-Shaped Optical Fiber. Sci. Rep. 2021, 11, 11266. [Google Scholar] [CrossRef] [PubMed]
- Gryga, M.; Ciprian, D.; Hlubina, P. Bloch Surface Wave Resonance Based Sensors as an Alternative to Surface Plasmon Resonance Sensors. Sensors 2020, 20, 5119. [Google Scholar] [CrossRef] [PubMed]
- Gryga, M.; Ciprian, D.; Hlubina, P. From Bloch Surface Waves to Cavity-Mode Resonances Reaching an Ultrahigh Sensitivity and a Figure of Merit. Opt. Lett. 2023, 48, 6068–6071. [Google Scholar] [CrossRef] [PubMed]
- Dias, B.S.; de Almeida, J.M.M.M.; Coelho, L.C.C. Refractometric Sensitivity of Bloch Surface Waves: Perturbation Theory Calculation and Experimental Validation. Opt. Lett. 2023, 48, 727–730. [Google Scholar] [CrossRef]
- Wei, Y.; Shi, J.; Liu, H.; Ge, D.; Zhang, L. Ultra-High Sensitivity Bloch Surface Wave Biosensor Design and Optimization. J. Opt. Soc. Am. B 2023, 40, 1890–1895. [Google Scholar] [CrossRef]
- Urrutia, A.; Del Villar, I.; Zubiate, P.; Zamarreño, C.R. A Comprehensive Review of Optical Fiber Refractometers: Toward a Standard Comparative Criterion. Laser Photonics Rev. 2019, 13, 1900094. [Google Scholar] [CrossRef]
- Debbal, M.; Bouregaa, M.; Chikh-Bled, H.; Chikh-Bled, M.E.K.; Ouadah, M.C.E. Influence of Temperature on the Chromatic Dispersion of Photonic Crystal Fiber by Infiltrating the Air Holes with Water. J. Opt. Commun. 2019, 44, 163–166. [Google Scholar] [CrossRef]
- Xie, Q.; Chen, Y.; Li, X.; Yin, Z.; Wang, L.; Geng, Y.; Hong, X. Characteristics of D-Shaped Photonic Crystal Fiber Surface Plasmon Resonance Sensors with Different Side-Polished Lengths. Appl. Opt. 2017, 56, 1550–1555. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Simultaneous Measurement of Refractive Index and Temperature Based on SPR in D-Shaped MOF. Appl. Opt. 2017, 56, 4369–4374. [Google Scholar] [CrossRef] [PubMed]
- Narayan, J.; Rajan, D. Highly Sensitive D Shaped PCF Sensor Based on SPR for near IR. Opt Quantum Electron 2016, 48, 137. [Google Scholar] [CrossRef]
- Gonzalez-Valencia, E.; Herrera, R.A.; Torres, P. Bloch Surface Wave Resonance in Photonic Crystal Fibers: Towards Ultra-Wide Range Refractive Index Sensors. Opt. Express 2019, 27, 8236. [Google Scholar] [CrossRef] [PubMed]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Valencia, E.; Lara-Davila, N.C.; Montoya-Cardona, J.A.; Gomez-Cardona, N.; Torres, P. Performance of Bloch-like Surface Wave Refractometers Based on Laterally Polished Photonic Crystal Fibers with Single-Layer Coatings: From Nanolayer to Nanostrip. Eng. Proc. 2025, 118, 22. https://doi.org/10.3390/ECSA-12-26492
Gonzalez-Valencia E, Lara-Davila NC, Montoya-Cardona JA, Gomez-Cardona N, Torres P. Performance of Bloch-like Surface Wave Refractometers Based on Laterally Polished Photonic Crystal Fibers with Single-Layer Coatings: From Nanolayer to Nanostrip. Engineering Proceedings. 2025; 118(1):22. https://doi.org/10.3390/ECSA-12-26492
Chicago/Turabian StyleGonzalez-Valencia, Esteban, Natalia Carolina Lara-Davila, Jorge Andres Montoya-Cardona, Nelson Gomez-Cardona, and Pedro Torres. 2025. "Performance of Bloch-like Surface Wave Refractometers Based on Laterally Polished Photonic Crystal Fibers with Single-Layer Coatings: From Nanolayer to Nanostrip" Engineering Proceedings 118, no. 1: 22. https://doi.org/10.3390/ECSA-12-26492
APA StyleGonzalez-Valencia, E., Lara-Davila, N. C., Montoya-Cardona, J. A., Gomez-Cardona, N., & Torres, P. (2025). Performance of Bloch-like Surface Wave Refractometers Based on Laterally Polished Photonic Crystal Fibers with Single-Layer Coatings: From Nanolayer to Nanostrip. Engineering Proceedings, 118(1), 22. https://doi.org/10.3390/ECSA-12-26492

