Use of Artificial Neural Networks for the Evaluation of Thermal Comfort Based on the PMV Index †
Abstract
1. Introduction
2. Materials and Methods
2.1. Dataset
2.2. Predicted Mean Vote
2.3. Analysis of Thermal Comfort Parameters
2.4. ANN Modeling for PMV Index Prediction
3. Results and Discussion
3.1. The Relationship of Environmental Parameters with the PMV Index
3.1.1. Air Temperature
3.1.2. Operative Temperature
3.1.3. Relative Humidity
3.1.4. Air Speed
3.2. Sensitivity Analysis of Thermal Comfort Parameters
3.3. Prediction of Thermal Comfort Using ANN Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMV | Predicted Mean Vote |
PPD | Predicted Percentage of Dissatisfied |
TP | Thermal Preference |
MRT | Mean Radiant Temperature |
clo | Clothing Insulation |
met | Metabolic Activity |
ta | Air Temperature (°C) |
top | Operative Temperature |
vel | Air Velocity |
rh | Relative Humidity |
ANN | Artificial Neural Network |
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
RMSE | Root Mean Square Error |
AI | Artificial Intelligence |
ML | Machine Learning |
SVM | Support Vector Machine |
TSV | Thermal Sensation Vote |
M | Metabolic Rates (W/m2) |
W | External Work (W/m2) |
Pa | Partial Pressure of Water Vapor (Pa) |
tr | Mean Radiation Temperature (°C) |
hc | Convective Heat Transfer Coefficient |
tcl | Clothing Surface Temperature |
References
- Song, Z.; Xia, Y.; Ma, M.; Deng, B.; Miao, T.; Fan, Q.; Li, J. Reliable sleep temperature regulation based on PMV model and dynamic thermal parameters. Build. Environ. 2024, 254, 111420. [Google Scholar] [CrossRef]
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the accuracy on PMV–PPD model using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef]
- Roni, M.S.B.; Hariri, A. ASHRAE Global Thermal Comfort Database II: Comparison of Thermal Comfort Conditions in Different Type of Building. Res. Prog. Mech. Manuf. Eng. 2021, 2, 189–200. [Google Scholar]
- Avci, A.B. Machine learning-based prediction of thermal comfort: Exploring building types, climate, ventilation strategies, and seasonal variations. Build. Res. Inf. 2025, 1–18. [Google Scholar] [CrossRef]
- Park, K.Y.; Woo, D.O. PMV Dimension Reduction Utilizing Feature Selection Method: Comparison Study on Machine Learning Models. Energies 2023, 16, 2419. [Google Scholar] [CrossRef]
- Buratti, C.; Ricciardi, P.; Vergoni, M. HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments. Appl. Energy 2013, 104, 117–127. [Google Scholar] [CrossRef]
- Sherman, M. A simplified model of thermal comfort. Energy Build. 1985, 8, 37–50. [Google Scholar] [CrossRef]
- Park, J.; Choi, H.; Kim, D.; Kim, T. Development of novel PMV-based HVAC control strategies using a mean radiant temperature prediction model by machine learning in Kuwaiti climate. Build. Environ. 2021, 206, 108357. [Google Scholar] [CrossRef]
- Ruivo, C.R.; da Silva, M.G.; Broday, E.E. Study on thermal comfort by using an atmospheric pressure dependent predicted mean vote index. Build. Environ. 2021, 206, 108370. [Google Scholar] [CrossRef]
- Lee, K.; Choi, H.; Kim, H.; Kim, D.D.; Kim, T. Assessment of a real-time prediction method for high clothing thermal insulation using a thermoregulation model and an infrared camera. Atmosphere 2020, 11, 106. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, S.; Wang, J.; Yang, J.; Jao, Y.L.; Wang, N. Data-driven personal thermal comfort prediction: A literature review. Renew. Sustain. Energy Rev. 2022, 161, 112357. [Google Scholar] [CrossRef]
- Farhan, A.A.; Pattipati, K.; Wang, B.; Luh, P. Predicting individual thermal comfort using machine learning algorithms. In Proceedings of the 2015 IEEE International Conference on Automation Science and Engineering (CASE), Gothenburg, Sweden, 24–28 August 2015; pp. 708–713. [Google Scholar] [CrossRef]
- Kumar, M.; Kar, I.N. Non-linear HVAC computations using least square support vector machines. Energy Convers. Manag. 2009, 50, 1411–1418. [Google Scholar] [CrossRef]
- Dudáš, A. Graphical representation of data prediction potential: Correlation graphs and correlation chains. Vis. Comput. 2024, 40, 6969–6982. [Google Scholar] [CrossRef]
- Boutahri, Y.; Tilioua, A. Machine learning-based predictive model for thermal comfort and energy optimization in smart buildings. Results Eng. 2024, 22, 102148. [Google Scholar] [CrossRef]
- Olori, V.E.; Brotherstone, S.; Hill, W.G.; McGuirk, B.J. Fit of standard models of the lactation curve to weekly records of milk production of cows in a single herd Livest. Prod. Sci. 1999, 58, 55–63. [Google Scholar] [CrossRef]
- Ze Ze, C.B.; Nneme Nneme, L.; Monkam, L. PMVd/PPDd model for predicting thermal comfort in air-conditioned buildings in hot and humid regions of Sub-Saharan Africa. Int. J. Air-Cond. Refrig. 2024, 32, 19. [Google Scholar] [CrossRef]
- Kim, J.H.; Min, Y.K.; Kim, B. Is the PMV index an indicator of human thermal comfort sensation. Int. J. Smart Home 2013, 7, 27–34. [Google Scholar]
- Moutela, R.; Carrilho, J.D.; Da Silva, M.G. Sensitivity of the PMV index to the thermal comfort parameters. In Proceedings of the 2nd Energy for Sustainability Multidisciplinary Conference, Coimbra, Portugal, 14–15 May 2015. [Google Scholar]
Value | −3 | −2 | −1 | 0 | 1 | 2 | 3 |
---|---|---|---|---|---|---|---|
Thermal perception | Cold | Cool | Slightly cool | Neutral | Slightly warm | Warm | Hot |
Meaning | Very Weak | Weak | Moderate | Strong | Very Strong |
---|---|---|---|---|---|
rs (+/−) | 0.01–0.19 | 0.20–0.39 | 0.40–0.59 | 0.60–0.79 | 0.80–1.00 |
Variable | R2 | Spearman (rs) | Force de la Relation |
---|---|---|---|
ta | 0.519439 | 0.720958 | Strong |
top | 0.519150 | 0.718806 | Strong |
vel | 0.037167 | 0.148076 | Weak |
rh | 0.018217 | 0.145672 | Weak |
met | 0.065232 | 0.216448 | Weak |
clo | 0.002108 | 0.079408 | Very weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yachrak, N.B.; Taoukil, D. Use of Artificial Neural Networks for the Evaluation of Thermal Comfort Based on the PMV Index. Eng. Proc. 2025, 112, 10. https://doi.org/10.3390/engproc2025112010
Yachrak NB, Taoukil D. Use of Artificial Neural Networks for the Evaluation of Thermal Comfort Based on the PMV Index. Engineering Proceedings. 2025; 112(1):10. https://doi.org/10.3390/engproc2025112010
Chicago/Turabian StyleYachrak, Naoual Ben, and Driss Taoukil. 2025. "Use of Artificial Neural Networks for the Evaluation of Thermal Comfort Based on the PMV Index" Engineering Proceedings 112, no. 1: 10. https://doi.org/10.3390/engproc2025112010
APA StyleYachrak, N. B., & Taoukil, D. (2025). Use of Artificial Neural Networks for the Evaluation of Thermal Comfort Based on the PMV Index. Engineering Proceedings, 112(1), 10. https://doi.org/10.3390/engproc2025112010