Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm †
Abstract
1. Introduction
2. Description of the Problem
3. IABC Algorithm
3.1. Encoding
3.2. Initial Solution Generation
3.3. Employed Bee Phase
3.4. Onlooker Bee Phase
4. Experiment and Findings
4.1. Experimental Setup
4.2. Performance Test of IABC Algorithm in Different Dynamic Arrival Time Scenarios
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karaboga, D.; Basturk, B. A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Zhu, Y.; He, S.; Lei, D. Dynamical Artificial Bee Colony for Energy-Efficient Unrelated Parallel Machine Scheduling with Additional Resources and Maintenance. Comput. Mater. Contin. 2024, 81, 843–866. [Google Scholar] [CrossRef]
- Wang, J.; Tang, H.; Lei, D. A Q-Learning Artificial Bee Colony for Distributed Assembly Flow Shop Scheduling with Factory Eligibility, Transportation Capacity and Setup Time. Eng. Appl. Artif. Intell. 2023, 123, 106230. [Google Scholar] [CrossRef]
- Wang, J.; Lei, D.; Tang, H. A Multi-Objective Dynamical Artificial Bee Colony for Energy-Efficient Fuzzy Hybrid Flow Shop Scheduling with Batch Processing Machines. Expert Syst. Appl. 2025, 259, 125244. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, S.; Xu, J.; Jiang, K.; Cheng, Y.; Zhang, W. Remanufacturing System Scheduling of Batch Products with the Consideration of Dynamic Changes in Machine Efficiency Using an Improved Artificial Bee Colony Algorithm. Comput. Ind. Eng. 2024, 187, 109817. [Google Scholar] [CrossRef]
- Liao, X.; Zhang, R.; Chen, Y.; Song, S. A New Artificial Bee Colony Algorithm for the Flexible Job Shop Scheduling Problem with Extra Resource Constraints in Numeric Control Centers. Expert Syst. Appl. 2024, 249, 123556. [Google Scholar] [CrossRef]
- Zhu, Y.; Tang, Q.; Zhang, L.; He, M.; Kapenda, J. Improved Multi-Objective Artificial Bee Colony Algorithm for Parallel Machine Lot-Streaming Scheduling Problem with Limited and Unequal Sub-Lots. Comput. Ind. Eng. 2023, 183, 109428. [Google Scholar] [CrossRef]
- Touafek, N.; Benbouzid-Si Tayeb, F.; Ladj, A. A Reinforcing-Learning-Driven Artificial Bee Colony Algorithm for Scheduling Jobs and Flexible Maintenance under Learning and Deteriorating Effects. Algorithms 2023, 16, 397. [Google Scholar] [CrossRef]

| Job | Machine | Average Computation Time | Standard Deviation | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| IABC | GA | ABC | IABC | GA | ABC | IABC | GA | ABC | ||
| n = 20 | m = 3 | 27.73 | 29.63 | 33.03 | 2.01 | 1.41 | 4.23 | 2.89 | 3.70 | 2.82 |
| m = 5 | 20.30 | 23.70 | 25.83 | 4.04 | 3.12 | 9.10 | 1.47 | 1.84 | 1.80 | |
| n = 50 | m = 3 | 113.43 | 139.73 | 147.60 | 3.62 | 2.94 | 8.83 | 5.91 | 7.83 | 7.69 |
| m = 5 | 70.23 | 94.00 | 100.17 | 3.83 | 3.11 | 9.48 | 4.99 | 5.97 | 6.05 | |
| n = 100 | m = 3 | 363.07 | 464.87 | 478.57 | 10.15 | 9.18 | 27.97 | 18.02 | 21.92 | 19.65 |
| m = 5 | 204.17 | 295.90 | 307.77 | 10.31 | 9.29 | 28.51 | 10.14 | 14.19 | 12.40 | |
| Algorithms | IABC vs. GA | IBAC vs. ABC | ||
|---|---|---|---|---|
| Small (n = 20) | m = 3 | p-value | 0.031 | 0 |
| t-test | + | + | ||
| m = 5 | p-value | 0 | 0 | |
| t-test | + | + | ||
| Medium (n = 50) | m = 3 | p-value | 0 | 0 |
| t-test | + | + | ||
| m = 5 | p-value | 0 | 0 | |
| t-test | + | + | ||
| Large (n = 100) | m = 3 | p-value | 0 | 0 |
| t-test | + | + | ||
| m = 5 | p-value | 0 | 0 | |
| t-test | + | + | ||
| Scenario Classification | Description |
|---|---|
| 50% jobs arrive at t = 0, 50% at t = 10. | |
| Scenario | J = 20 | J = 50 | ||||||
|---|---|---|---|---|---|---|---|---|
| IABC | ABC | GA | FCFS | IABC | ABC | GA | FCFS | |
| Uniform Distribution U[0,10] | 28.00 | 33.20 | 30.10 | 88.00 | 61.33 | 76.47 | 73.33 | 231.00 |
| Concentrated Arrival (0/10) | 26.00 | 30.60 | 28.50 | 67.00 | 55.83 | 71.70 | 67.80 | 201.00 |
| Normal Distribution N(5,4) | 27.87 | 33.73 | 31.00 | 104.00 | 51.50 | 66.17 | 63.23 | 186.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, L.; Zhang, H.; Chen, Y. Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm. Eng. Proc. 2025, 111, 9. https://doi.org/10.3390/engproc2025111009
Lian L, Zhang H, Chen Y. Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm. Engineering Proceedings. 2025; 111(1):9. https://doi.org/10.3390/engproc2025111009
Chicago/Turabian StyleLian, Longfei, Haosen Zhang, and Yarong Chen. 2025. "Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm" Engineering Proceedings 111, no. 1: 9. https://doi.org/10.3390/engproc2025111009
APA StyleLian, L., Zhang, H., & Chen, Y. (2025). Enhancing Makespan Minimization in Unrelated Parallel Batch Processing with an Improved Artificial Bee Colony Algorithm. Engineering Proceedings, 111(1), 9. https://doi.org/10.3390/engproc2025111009

