Degradation Kinetics of Bisphenol A by Catalytic Wet Oxidation with Ruthenium-Impregnated Carbon Nanosphere Catalysts †
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Kinetic Degradation: One-Factor Potential Model
3.2. Kinetic Degradation: Complex Potential Model
3.3. Effect of the Ruthenium Load in the CNS−Ru Catalyst
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubin, B.S.; Bisphenol, A. An endocrine disruptor with widespread exposure and multiple effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Deblonde, T.; Cossu-Leguille, C.; Hartemann, P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health 2011, 214, 442–448. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority and European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Food Contact Materials; Enzymes; Flavourings and Processing Aids (CEF). Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015, 13, 3978. [Google Scholar] [CrossRef]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global assessment of bisphenol a in the environment: Review and analysis of its occurrence and bioaccumulation. Dose-Response Int. J. 2015, 13, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erjavec, B.; Kaplan, R.; Djinović, P.; Pintar, A. Catalytic wet air oxidation of bisphenol A model solution in a trickle-bed reactor over titanate nanotube-based catalysts. Appl. Catal. B Environ. 2013, 132, 342–352. [Google Scholar] [CrossRef]
- Huaccallo, Y.; Álvarez-Torrellas, S.; Marín, M.P.; Gil, M.V.; Larriba, M.; Águeda, V.I.; Ovejero, G.; García, J. Magnetic Fe3O4/multi-walled carbon nanotubes materials for a highly efficient depletion of diclofenac by catalytic wet peroxideoxidation. Environ. Sci. Pollut. Res. 2019, 26, 22372–22388. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, B.-T.; Teng, Y.; Zhao, J.; Sun, X. Heterogeneous activation of persulfate by carbon nanofiber supported Fe3O4@carbon composites for efficient ibuprofen degradation. J. Hazard. Mater. 2021, 401, 123428. [Google Scholar] [CrossRef] [PubMed]
- Serra-Perez, E.; Ferronato, C.; Giroir-Fendler, A.; Alvarez-Torrellas, S.; Ovejero, G.; Garcia, J. Highly Efficient Ru Supported on Carbon Nanosphere Nanoparticles for Ciprofloxacin Removal: Effects of Operating Parameters, Degradation Pathways, and Kinetic Study. Ind. Eng. Chem. Res. 2020, 59, 15515–15530. [Google Scholar] [CrossRef]
- Serra-Pérez, E.; Álvarez-Torrellas, S.; Águeda, V.I.; Delgado, J.A.; Ovejero, G.; García, J. Insights into the removal of Bisphenol A by catalytic wet air oxidation upon carbon nanospheres-based catalysts: Key operating parameters, degradation intermediates and reaction pathway. Appl. Surf. Sci. 2019, 473, 726–737. [Google Scholar] [CrossRef]
Experiment | T (°C) | P (bar) | [CNS−Ru(2%)] (gRu L−1) | C0BPA (mg L−1) |
---|---|---|---|---|
1 | 110 | 20 | 0.04 | 20 |
2 | 130 | 20 | 0.04 | 20 |
3 | 140 | 20 | 0.04 | 20 |
4 | 150 | 20 | 0.04 | 20 |
5 | 130 | 30 | 0.04 | 20 |
6 | 130 | 40 | 0.04 | 20 |
7 | 130 | 50 | 0.04 | 20 |
8 | 130 | 20 | 0.01 | 20 |
9 | 130 | 20 | 0.02 | 20 |
10 | 130 | 20 | 0.06 | 20 |
11 | 130 | 20 | 0.04 | 5 |
12 | 130 | 20 | 0.04 | 10 |
13 | 130 | 20 | 0.04 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serra-Pérez, E.; Ovejero, G.; García, J. Degradation Kinetics of Bisphenol A by Catalytic Wet Oxidation with Ruthenium-Impregnated Carbon Nanosphere Catalysts. Chem. Proc. 2022, 6, 5. https://doi.org/10.3390/ECCS2021-11167
Serra-Pérez E, Ovejero G, García J. Degradation Kinetics of Bisphenol A by Catalytic Wet Oxidation with Ruthenium-Impregnated Carbon Nanosphere Catalysts. Chemistry Proceedings. 2022; 6(1):5. https://doi.org/10.3390/ECCS2021-11167
Chicago/Turabian StyleSerra-Pérez, Estrella, Gabriel Ovejero, and Juan García. 2022. "Degradation Kinetics of Bisphenol A by Catalytic Wet Oxidation with Ruthenium-Impregnated Carbon Nanosphere Catalysts" Chemistry Proceedings 6, no. 1: 5. https://doi.org/10.3390/ECCS2021-11167
APA StyleSerra-Pérez, E., Ovejero, G., & García, J. (2022). Degradation Kinetics of Bisphenol A by Catalytic Wet Oxidation with Ruthenium-Impregnated Carbon Nanosphere Catalysts. Chemistry Proceedings, 6(1), 5. https://doi.org/10.3390/ECCS2021-11167